
Shimin Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2325114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing buckling and post-buckling deformation of hollow amorphous carbon nanospheres: In-situ experiment and theoretical analysis. Carbon, 2018, 137, 411-418.	10.3	16

Stretchable Electronics: $In\hat{a} \in Plane$ Deformation Mechanics for Highly Stretchable Electronics (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 21.0

3	Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 2017, 29, 1604989.	21.0	141
4	Shear strengths of FCC-FCC cube-on-cube interfaces. Scripta Materialia, 2017, 130, 178-181.	5.2	13
5	Measuring Interfacial Shear Strength of Cu x Ni-Nb Alloys. Microscopy and Microanalysis, 2016, 22, 1480-1481.	0.4	1
6	Epidermal radio frequency electronics for wireless power transfer. Microsystems and Nanoengineering, 2016, 2, 16052.	7.0	72
7	Large-deformation and high-strength amorphous porous carbon nanospheres. Scientific Reports, 2016, 6, 24187.	3.3	42
8	Compression-Induced Deformation of Individual Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2015, 137, 1750-1753.	13.7	66
9	Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An in Situ TEM Study. ACS Applied Materials & Interfaces, 2015, 7, 20829-20834.	8.0	50
10	Grain Boundary Parting Limit during Dealloying. Advanced Engineering Materials, 2015, 17, 157-161.	3.5	3
11	Quantitative comparison of sink efficiency of Cu–Nb, Cu–V and Cu–Ni interfaces for point defects. Acta Materialia, 2015, 82, 328-335.	7.9	57
12	Measuring size dependent electrical properties from nanoneedle structures: Pt/ZnO Schottky diodes. Applied Physics Letters, 2014, 104, .	3.3	5
13	Transient Electronics: Dissolvable Metals for Transient Electronics (Adv. Funct. Mater. 5/2014). Advanced Functional Materials, 2014, 24, 644-644.	14.9	5
14	Effect of irradiation damage on the shear strength of Cu–Nb interfaces. Scripta Materialia, 2014, 90-91, 29-32.	5.2	21
15	Dissolvable Metals for Transient Electronics. Advanced Functional Materials, 2014, 24, 645-658.	14.9	379
16	The influence of Cu–Nb interfaces on local vacancy concentrations in Cu. Scripta Materialia, 2013, 69, 21-24.	5.2	15
17	Influence of a Cu-Nb interface on local lattice diffusivity in Cu during irradiation. Microscopy and Microanalysis, 2013, 19, 1828-1829.	0.4	0
18	Approximating the Metastable Defect Concentration in Supersaturated Materials: A Case Study of the <scp><scp>SrTiO₃/TiO₂</scp></scp> System. Journal of the American Ceramic Society, 2012, 95, 788-792.	3.8	1