Daniela Arosio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/232478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HuR-targeted agents: An insight into medicinal chemistry, biophysical, computational studies and pharmacological effects on cancer models. Advanced Drug Delivery Reviews, 2022, 181, 114088.	6.6	11
2	Squalene-Based Nano-Assemblies Improve the Pro-Autophagic Activity of Trehalose. Pharmaceutics, 2022, 14, 862.	2.0	7
3	Trehalose-based neuroprotective autophagy inducers. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127929.	1.0	16
4	Synthesis and Characterization of Novel Mono- and Bis-Guanyl Hydrazones as Potent and Selective ASIC1 Inhibitors Able to Reduce Brain Ischemic Insult. Journal of Medicinal Chemistry, 2021, 64, 8333-8353.	2.9	3
5	Interfering with the Tumor–Immune Interface: Making Way for Triazine-Based Small Molecules as Novel PD-L1 Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 16020-16045.	2.9	16
6	Retromer stabilization results in neuroprotection in a model of Amyotrophic Lateral Sclerosis. Nature Communications, 2020, 11, 3848.	5.8	44
7	Cyclic RGD and isoDGR Integrin Ligands Containing cis-2-amino-1-cyclopentanecarboxylic (cis-β-ACPC) Scaffolds. Molecules, 2020, 25, 5966.	1.7	5
8	Shifting Towards α _V β ₆ Integrin Ligands Using Novel Aminoprolineâ€Based Cyclic Peptidomimetics. Chemistry - A European Journal, 2020, 26, 13468-13475.	1.7	7
9	Multimeric Presentation of RGD Peptidomimetics Enhances Integrin Binding and Tumor Cell Uptake. Chemistry - A European Journal, 2020, 26, 7492-7496.	1.7	10
10	HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. Journal of Clinical Investigation, 2020, 130, 3848-3864.	3.9	38
11	Conjugates of Cryptophycin and RGD or <i>iso</i> DGR Peptidomimetics for Targeted Drug Delivery. ChemistryOpen, 2019, 8, 737-742.	0.9	17
12	Nanolipid-Trehalose Conjugates and Nano-Assemblies as Putative Autophagy Inducers. Pharmaceutics, 2019, 11, 422.	2.0	14
13	Kiss and Run: Promoting Effective and Targeted Cellular Uptake of a Drug Delivery Vehicle Composed of an Integrin-Targeting Diketopiperazine Peptidomimetic and a Cell-Penetrating Peptide. Bioconjugate Chemistry, 2019, 30, 2011-2022.	1.8	44
14	β-Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate. Organic and Biomolecular Chemistry, 2019, 17, 4705-4710.	1.5	14
15	Synthesis and Biological Evaluation of RGD and <i>iso</i> DGR–Monomethyl Auristatin Conjugates Targeting Integrin î± _V î² ₃ . ChemMedChem, 2019, 14, 938-942.	1.6	26
16	Rational Design of Antiangiogenic Helical Oligopeptides Targeting the Vascular Endothelial Growth Factor Receptors. Frontiers in Chemistry, 2019, 7, 170.	1.8	10
17	Intracisternal delivery of PEG-coated gold nanoparticles results in high brain penetrance and long-lasting stability. Journal of Nanobiotechnology, 2019, 17, 49.	4.2	18
18	A dimeric bicyclic RGD ligand displays enhanced integrin binding affinity and strong biological effects on U-373 MG glioblastoma cells. Organic and Biomolecular Chemistry, 2019, 17, 8913-8917.	1.5	4

DANIELA AROSIO

#	Article	IF	CITATIONS
19	Neutrophil Elastase Promotes Linker Cleavage and Paclitaxel Release from an Integrinâ€Targeted Conjugate. Chemistry - A European Journal, 2019, 25, 1696-1700.	1.7	29
20	Synthesis and Biological Evaluation of Paclitaxel Conjugates Involving Linkers Cleavable by Lysosomal Enzymes and α _V β ₃ â€Integrin Ligands for Tumor Targeting. European Journal of Organic Chemistry, 2018, 2018, 2902-2909.	1.2	16
21	Stereodivergent synthesis of 5-aminopipecolic acids and application in the preparation of a cyclic RGD peptidomimetic as a nanomolar l± _V l² ₃ integrin ligand. Organic and Biomolecular Chemistry, 2018, 16, 3402-3414.	1.5	4
22	Interfering with HuR–RNA Interaction: Design, Synthesis and Biological Characterization of Tanshinone Mimics as Novel, Effective HuR Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 1483-1498.	2.9	39
23	Synthesis and biological evaluation of RGD and isoDGR peptidomimetic-α-amanitin conjugates for tumor-targeting. Beilstein Journal of Organic Chemistry, 2018, 14, 407-415.	1.3	30
24	4-Connected azabicyclo[5.3.0]decane Smac mimetics-Zn 2+ chelators as dual action antitumoral agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2336-2344.	1.0	4
25	Tumor Targeting with an <i>iso</i> DGR–Drug Conjugate. Chemistry - A European Journal, 2017, 23, 7910-7914.	1.7	17
26	Insights into the Binding of Cyclic RGD Peptidomimetics to α ₅ β ₁ Integrin by using Live-Cell NMR And Computational Studies. ChemistryOpen, 2017, 6, 128-136.	0.9	21
27	Targeting Integrin α _V β ₃ with Theranostic RGD-Camptothecin Conjugates Bearing a Disulfide Linker: Biological Evaluation Reveals a Complex Scenario. ChemistrySelect, 2017, 2, 4759-4766.	0.7	14
28	Synthesis of Novel c(AmpRGD)–Sunitinib Dual Conjugates as Molecular Tools Targeting the α _v β ₃ Integrin/VEGFR2 Couple and Impairing Tumor-Associated Angiogenesis. Journal of Medicinal Chemistry, 2017, 60, 248-262.	2.9	36
29	Frontispiece: Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, .	1.7	0
30	Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, 14410-14415.	1.7	27
31	Investigating the Interaction of Cyclic RGD Peptidomimetics with αVβ6 Integrin by Biochemical and Molecular Docking Studies. Cancers, 2017, 9, 128.	1.7	18
32	Integrin-Targeted Peptide- and Peptidomimetic-Drug Conjugates for the Treatment of Tumors. Recent Patents on Anti-Cancer Drug Discovery, 2017, 12, 148-168.	0.8	33
33	Dual action Smac mimetics–zinc chelators as pro-apoptotic antitumoral agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4613-4619.	1.0	6
34	New potent α _v l² ₃ integrin ligands based on azabicycloalkane (l̂3,l̂±)-dipeptide mimics. Organic and Biomolecular Chemistry, 2016, 14, 3221-3233.	1.5	4
35	Advancement in integrin facilitated drug delivery. Advanced Drug Delivery Reviews, 2016, 97, 111-143.	6.6	128
36	Synthesis, Characterization, and Biological Evaluation of a Dualâ€Action Ligand Targeting α _v l² ₃ Integrin and VEGF Receptors. ChemistryOpen, 2015, 4, 633-641.	0.9	25

#	Article	IF	CITATIONS
37	Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function. Scientific Reports, 2015, 5, 16478.	1.6	65
38	Design, synthesis and biological evaluation of novel dimeric and tetrameric cRGD–paclitaxel conjugates for integrin-assisted drug delivery. Organic and Biomolecular Chemistry, 2015, 13, 7530-7541.	1.5	22
39	Cyclic <i>iso</i> DGR and RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds are Integrin Antagonists. Chemistry - A European Journal, 2015, 21, 6265-6271.	1.7	33
40	Synthesis and preclinical evaluation of a novel, selective ¹¹¹ In-labelled aminoproline-RGD-peptide for non-invasive melanoma tumor imaging. MedChemComm, 2015, 6, 2175-2183.	3.5	11
41	Synthesis and Biological Evaluation of RGD Peptidomimetic–Paclitaxel Conjugates Bearing Lysosomally Cleavable Linkers. Chemistry - A European Journal, 2015, 21, 6921-6929.	1.7	48
42	Computational design of novel peptidomimetic inhibitors of cadherin homophilic interactions. Organic and Biomolecular Chemistry, 2015, 13, 2570-2573.	1.5	16
43	SPION-Smac mimetic nano-conjugates: Putative pro-apoptotic agents in oncology. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2374-2378.	1.0	5
44	Effective Targeting of DC-SIGN by α-Fucosylamide Functionalized Gold Nanoparticles. Bioconjugate Chemistry, 2014, 25, 2244-2251.	1.8	50
45	Synthesis and biological evaluation of dual action <i>cyclo</i> -RGD/SMAC mimetic conjugates targeting α _v l² ₃ lî± _v l² ₅ integrins and IAP proteins. Organic and Biomolecular Chemistry, 2014, 12, 3288-3302.	1.5	19
46	Enhancement of the Uptake and Cytotoxic Activity of Doxorubicin in Cancer Cells by Novel cRGD-Semipeptide-Anchoring Liposomes. Molecular Pharmaceutics, 2014, 11, 2280-2293.	2.3	25
47	Cyclic <i>iso</i> DGR Peptidomimetics as Lowâ€Nanomolar α _v β ₃ Integrin Ligands. Chemistry - A European Journal, 2013, 19, 3563-3567.	1.7	28
48	Molecular Targeting of Imaging and Drug Delivery Probes in Atherosclerosis. Annual Reports in Medicinal Chemistry, 2013, 48, 105-118.	0.5	1
49	Iron Oxide-Gold Core-Shell Nanoparticles as Multimodal Imaging Contrast Agent. IEEE Sensors Journal, 2013, 13, 2341-2347.	2.4	15
50	MicroPET/CT imaging of αvβ3 integrin via a novel 68Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 1265-1274.	3.3	38
51	Bisphosphonate-functionalized cyclic Arg-Gly-Asp peptidomimetics. Arkivoc, 2013, 2013, 185-200.	0.3	0
52	Integrin-Mediated Drug Delivery in Cancer and Cardiovascular Diseases with Peptide-Functionalized Nanoparticles. Current Medicinal Chemistry, 2012, 19, 3128-3151.	1.2	34
53	Synthesis and Biological Evaluation (in Vitro and in Vivo) of Cyclic Arginine–Glycine–Aspartate (RGD) Peptidomimetic–Paclitaxel Conjugates Targeting Integrin α _V β ₃ . Journal of Medicinal Chemistry, 2012, 55, 10460-10474.	2.9	68
54	Design, Synthesis, and Biological Evaluation of Novel cRGD–Paclitaxel Conjugates for Integrin-Assisted Drug Delivery. Bioconjugate Chemistry, 2012, 23, 1610-1622.	1.8	41

DANIELA AROSIO

#	Article	IF	CITATIONS
55	Homo- and heterodimeric Smac mimetics/IAP inhibitors as in vivo-active pro-apoptotic agents. Part I: Synthesis. Bioorganic and Medicinal Chemistry, 2012, 20, 6687-6708.	1.4	20
56	Small molecules as pro-apoptotic anticancer agents. Pharmaceutical Patent Analyst, 2012, 1, 483-505.	0.4	3
57	Cyclic RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds as New Potent Integrin Ligands. Chemistry - A European Journal, 2012, 18, 6195-6207.	1.7	62
58	Synthesis of Gd and ⁶⁸ Ga Complexes in Conjugation with a Conformationally Optimized RGD Sequence as Potential MRI and PET Tumorâ€Imaging Probes. ChemMedChem, 2012, 7, 1084-1093.	1.6	53
59	Rational design, synthesis and characterization of potent, drug-like monomeric Smac mimetics as pro-apoptotic anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2204-2208.	1.0	7
60	Cyclic RGD Functionalized Gold Nanoparticles for Tumor Targeting. Bioconjugate Chemistry, 2011, 22, 664-672.	1.8	82
61	A new optical imaging probe targeting <i>α</i> _V <i>β</i> ₃ integrin in glioblastoma xenografts. Contrast Media and Molecular Imaging, 2011, 6, 449-458.	0.4	39
62	Characterization of iron oxide-gold core-shell multifunctional nanoparticles in biomedical imaging. , 2011, , .		0
63	Synthesis of non glycosidic nucleobase-sugar mimetics. Comptes Rendus Chimie, 2010, 13, 1284-1300.	0.2	5
64	Cyclic RGDâ€Containing Functionalized Azabicycloalkane Peptides as Potent Integrin Antagonists for Tumor Targeting. ChemMedChem, 2009, 4, 615-632.	1.6	44
65	Rational design, synthesis and characterization of potent, non-peptidic Smac mimics/XIAP inhibitors as proapoptotic agents for cancer therapy. Bioorganic and Medicinal Chemistry, 2009, 17, 5834-5856.	1.4	36
66	Designing Smac-mimetics as antagonists of XIAP, cIAP1, and cIAP2. Biochemical and Biophysical Research Communications, 2009, 378, 162-167.	1.0	50
67	Functionalized Cyclic RGD Peptidomimetics: Conjugable ligands for α _v l² ₃ Receptor Imaging. Bioconjugate Chemistry, 2009, 20, 1611-1617.	1.8	26
68	A Potent Integrin Antagonist from a Small Library of Cyclic RGD Pentapeptide Mimics Including Benzyl‧ubstituted Azabicycloalkane Amino Acids. ChemMedChem, 2008, 3, 1589-1603.	1.6	27
69	Targeting the X-Linked Inhibitor of Apoptosis Protein through 4-Substituted Azabicyclo[5.3.0]alkane Smac Mimetics. Structure, Activity, and Recognition Principles. Journal of Molecular Biology, 2008, 384, 673-689.	2.0	40
70	Solid phase immunoadsorption for therapeutic and analytical studies on neuropathy-associated anti-GM1 antibodies. Glycobiology, 2007, 17, 294-303.	1.3	38
71	Click chemistry to functionalise peptidomimetics. Tetrahedron Letters, 2006, 47, 3697-3700.	0.7	20
72	An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9673-9678	3.3	206

DANIELA AROSIO

#	Article	IF	CITATIONS
73	A Synthetic Divalent Cholera Toxin Glycocalix[4]arene Ligand Having Higher Affinity than Natural GM1 Oligosaccharide. Journal of the American Chemical Society, 2005, 127, 3660-3661.	6.6	79
74	Functionalized Azabicycloalkane Amino Acids by Nitrone 1,3-Dipolar Intramolecular Cycloaddition. Journal of Organic Chemistry, 2005, 70, 4124-4132.	1.7	39
75	Regiospecific Synthesis of Mono-N-substituted Indolopyrrolocarbazoles. Organic Letters, 2005, 7, 4573-4576.	2.4	26
76	Intramolecular Carbohydrate-Aromatic Interactions and Intermolecular van der Waals Interactions Enhance the Molecular Recognition Ability of GM1 Glycomimetics for Cholera Toxin. Chemistry - A European Journal, 2004, 10, 4395-4406.	1.7	69
77	Synthesis and cholera toxin binding properties of multivalent GM1 mimicsElectronic supplementary information (ESI) available: characterization of the polyvalent compounds ? imide by-products. See http://www.rsc.org/suppdata/ob/b4/b405344c/. Organic and Biomolecular Chemistry, 2004, 2, 2113.	1.5	77
78	Ganglioside GM1 mimics: lipophilic substituents improve affinity for cholera toxin. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3831-3834.	1.0	17
79	Mimics of ganglioside GM1 as cholera toxin ligands: replacement of the GalNAc residueElectronic supplementary information (ESI) available: synthetic details, product characterisations and full NOE contact list. See http://www.rsc.org/suppdata/ob/b2/b210503a/. Organic and Biomolecular Chemistry, 2003. 1. 785-792.	1.5	31
80	Solid-phase synthesis of combinatorial libraries based on enatiomerically pure (1S,2S,4R,5S)-4,5-dihydroxycyclohexan-1,2-dicarboxylic acid scaffolds. Il Farmaco, 2002, 57, 861-864.	0.9	1
81	Mimicking gangliosides by design: mimics of GM1 headgroup. Neurochemical Research, 2002, 27, 539-545.	1.6	23
82	Stereoselective Synthesis of Conformationally Constrained Cyclohexanediols:  A Set of Molecular Scaffolds for the Synthesis of Glycomimetics. Journal of Organic Chemistry, 2001, 66, 6209-6216.	1.7	41
83	Improved synthesis of both enantiomers of trans-cyclohex-4-ene-1,2-dicarboxylic acid. Tetrahedron: Asymmetry, 1999, 10, 3403-3407.	1.8	32