
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/232470/publications.pdf Version: 2024-02-01

DDIVADADSI DE

#	Article	IF	CITATIONS
1	Sideâ€chain aminoâ€acidâ€based polymers: selfâ€assembly and bioapplications. Polymer International, 2022, 71, 411-425.	1.6	20
2	Controlling the Membrane Perturbation by Tuning Charge Variable Cholate-Based Macromolecules. ACS Applied Polymer Materials, 2022, 4, 1323-1333.	2.0	4
3	Amino acid-based polymeric gel network and its application in different fields. Journal of the Indian Chemical Society, 2022, 99, 100366.	1.3	7
4	Polymerization-Induced Self-Assembly (PISA) Generated Cholesterol-Based Block Copolymer Nano-Objects in a Nonpolar Solvent: Combined Experimental and Simulation Study. Macromolecules, 2022, 55, 1139-1152.	2.2	7
5	From small molecules to polymeric probes: recent advancements of formaldehyde sensors. Science and Technology of Advanced Materials, 2022, 23, 49-63.	2.8	14
6	Recent Progress in Macromolecular Design and Synthesis ofÂBile Acidâ€Based Polymeric Architectures. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	2
7	Fatty acid-based polymeric micelles to ameliorate amyloidogenic disorders. Biomaterials Science, 2022, 10, 3466-3479.	2.6	8
8	Block Copolymers of Poly(ε-caprolactone) with pH-Responsive Side-Chain Amino Acid Moieties. Journal of Polymers and the Environment, 2021, 29, 209-218.	2.4	5
9	Current status, challenges and future directions in the treatment of neurodegenerative diseases by polymeric materials. Journal of the Indian Chemical Society, 2021, 98, 100011.	1.3	12
10	Cholate Conjugated Polymeric Amphiphiles as Efficient Artificial Ionophores. ACS Applied Polymer Materials, 2021, 3, 588-593.	2.0	9
11	Recent progress in polymer-based optical chemosensors for Cu2+ and Hg2+ lons: A comprehensive review. European Polymer Journal, 2021, 145, 110233.	2.6	25
12	Phenylalanineâ€Tethered pHâ€Responsive Poly(2â€Hydroxyethyl Methacrylate). Chemistry - an Asian Journal, 2021, 16, 1016-1024.	1.7	6
13	Recent Advances in Biomedical Applications of Cholic Acid-Based Macromolecules. ACS Applied Polymer Materials, 2021, 3, 1687-1706.	2.0	18
14	Ultraviolet Light- or pH-Triggered Nitric Oxide Release from a Water-Soluble Polymeric Scaffold. ACS Applied Polymer Materials, 2021, 3, 2310-2315.	2.0	9
15	From Small Molecules to Synthesized Polymers: Potential Role in Combating Amyloidogenic Disorders. ACS Chemical Neuroscience, 2021, 12, 1737-1748.	1.7	24
16	Interactions and Dynamics in Aqueous Solutions of pH-Responsive Polymers: A Combined Fluorescence and Dielectric Relaxation Study. Journal of Physical Chemistry B, 2021, 125, 6023-6035.	1.2	5
17	Block Copolymer Synthesis by the Combination of Living Cationic Polymerization and Other Polymerization Methods. Frontiers in Chemistry, 2021, 9, 644547.	1.8	20
18	Highly Sensitive Detection of Nitro Compounds Using a Fluorescent Copolymer-Based FRET System. ACS Applied Polymer Materials, 2021, 3, 4017-4026.	2.0	26

#	Article	IF	CITATIONS
19	Recent progress in pendant rhodamine-based polymeric sensors for the detection of copper, mercury and iron ions. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 835-848.	1.2	18
20	Nitric Oxide Releasing Delivery Platforms: Design, Detection, Biomedical Applications, and Future Possibilities. Molecular Pharmaceutics, 2021, 18, 3181-3205.	2.3	37
21	Styreneâ€Maleimide/Maleic Anhydride Alternating Copolymers: Recent Advances and Future Perspectives. Macromolecular Rapid Communications, 2021, 42, e2100501.	2.0	30
22	Modulating Insulin Aggregation with Charge Variable Cholic Acid-Derived Polymers. Biomacromolecules, 2021, 22, 4833-4845.	2.6	14
23	Future Direction of Designing Antioxidant Polymers in Modulating Protein Aggregation Process. Journal of Molecular and Engineering Materials, 2021, 09, .	0.9	4
24	AIE-active non-conjugated poly(<i>N</i> -vinylcaprolactam) as a fluorescent thermometer for intracellular temperature imaging. Chemical Science, 2020, 11, 141-147.	3.7	64
25	Unusual Nanostructured Morphologies Enabled by Interpolyelectrolyte Complexation of Polyions Bearing Incompatible Nonionic Segments. Macromolecules, 2020, 53, 10754-10764.	2.2	7
26	Side-Chain Proline-Based Polymers as Effective Inhibitors for In Vitro Aggregation of Insulin. ACS Applied Bio Materials, 2020, 3, 5407-5419.	2.3	25
27	Recent advances in the development and applications of nonconventional luminescent polymers. Polymer Chemistry, 2020, 11, 7293-7315.	1.9	54
28	Rhodamine-Appended Polymeric Probe: An Efficient Colorimetric and Fluorometric Sensing Platform for Hg ²⁺ in Aqueous Medium and Living Cells. ACS Applied Polymer Materials, 2020, 2, 5077-5085.	2.0	28
29	Modulation of Amyloid Protein Fibrillation by Synthetic Polymers: Recent Advances in the Context of Neurodegenerative Diseases. ACS Applied Bio Materials, 2020, 3, 6598-6625.	2.3	52
30	Polyperoxides from Cyclic Monomers: Synthesis, Characterization, and High-Pressure Kinetics Study. ACS Applied Polymer Materials, 2020, 2, 4109-4117.	2.0	3
31	Self-Assembly of Amphiphilic Copolymers with Sequence-Controlled Alternating Hydrophilic–Hydrophobic Pendant Side Chains. ACS Applied Polymer Materials, 2020, 2, 2035-2045.	2.0	57
32	Synthesis of Glutamic Acid Derived Organogels and their Applications in Dye Removal from Aqueous Medium. Macromolecular Materials and Engineering, 2020, 305, 1900809.	1.7	53
33	Compositionâ€dependent crystallization behavior of copolyperoxides from methyl methacrylate and 4â€vinylbenzyl stearate. Journal of Polymer Science, 2020, 58, 766-778.	2.0	7
34	Poly-tryptophan/carbazole based FRET-system for sensitive detection of nitroaromatic explosives. Optical Materials, 2020, 100, 109710.	1.7	25
35	Multifunctional tryptophan-based fluorescent polymeric probes for sensing, bioimaging and removal of Cu ²⁺ and Hg ²⁺ ions. Polymer Chemistry, 2020, 11, 2015-2026.	1.9	37
36	Alternating copolymers with glycyl-glycine and alanyl-alanine side-chain pendants: synthesis, characterization and solution properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 675-683.	1.2	17

#	Article	IF	CITATIONS
37	Alternating Copolymers Based on Amino Acids and Peptides. Materials Horizons, 2020, , 95-119.	0.3	0
38	Redox-Driven Disassembly of Polymer–Chlorambucil Polyprodrug: Delivery of Anticancer Nitrogen Mustard and DNA Alkylation. ACS Applied Polymer Materials, 2019, 1, 2503-2515.	2.0	35
39	Effects of Main-chain and Chain-ends on the Organogelation of Stearoyl Appended Pendant Valine Based Polymers. Chinese Journal of Polymer Science (English Edition), 2019, 37, 903-911.	2.0	5
40	A dual "Turn-on/Turn-off―"FRET―sensor for highly sensitive and selective detection of lead and methylene blue based on fluorescent dansyl tagged copolymer and small molecule diketopyrrolopyrrole. Polymer Testing, 2019, 79, 105997.	2.3	13
41	pH-Induced Amphiphilicity-Reversing Schizophrenic Aggregation by Alternating Copolymers. Macromolecules, 2019, 52, 8346-8358.	2.2	50
42	Dual-Action Polymeric Probe: Turn-On Sensing and Removal of Hg ²⁺ ; Chemosensor for HSO ₄ [–] . ACS Applied Polymer Materials, 2019, 1, 461-471.	2.0	40
43	Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics. Scientific Reports, 2019, 9, 7269.	1.6	61
44	Amino acid-derived alternating polyampholyte luminogens. Polymer Chemistry, 2019, 10, 3306-3317.	1.9	16
45	Exploring Aqueous Solution Dynamics of an Amphiphilic Diblock Copolymer: Dielectric Relaxation and Time-Resolved Fluorescence Measurements. Journal of Physical Chemistry B, 2019, 123, 5892-5901.	1.2	9
46	A Novel PEGylated Block Copolymer in New Age Therapeutics for Alzheimer's Disease. Molecular Neurobiology, 2019, 56, 6551-6565.	1.9	16
47	Matrix assisted antibacterial activity of polymer conjugates with pendant antibiotics, and bioactive and biopassive moieties. Journal of Materials Chemistry B, 2019, 7, 3007-3018.	2.9	12
48	Stearoyl-appended pendant amino acid-based hyperbranched polymers for selective gelation of oil from oil/water mixtures. Polymer Chemistry, 2019, 10, 1795-1805.	1.9	12
49	Cloud Point Driven Dynamics in Aqueous Solutions of Thermoresponsive Copolymers: Are They Akin to Criticality Driven Solution Dynamics?. Journal of Physical Chemistry B, 2019, 123, 11042-11054.	1.2	9
50	Hydrogen bonding driven selfâ€assembly of sideâ€chain amino acid and fatty acid appended poly(methacrylate)s: Gelation and application in oil spill recovery. Journal of Polymer Science Part A, 2019, 57, 511-521.	2.5	26
51	Matrix-Assisted Regulation of Antimicrobial Properties: Mechanistic Elucidation with Ciprofloxacin-Based Polymeric Hydrogel Against <i>Vibrio</i> Species. Bioconjugate Chemistry, 2019, 30, 218-230.	1.8	16
52	Aromatic Nitrogen Mustard-Based Autofluorescent Amphiphilic Brush Copolymer as pH-Responsive Drug Delivery Vehicle. Biomacromolecules, 2019, 20, 546-557.	2.6	41
53	Modulation of side chain crystallinity in alternating copolymers. Polymer Chemistry, 2019, 10, 6588-6599.	1.9	19
54	Leucine-Based Polymer Architecture-Induced Antimicrobial Properties and Bacterial Cell Morphology Switching. ACS Omega, 2018, 3, 769-780.	1.6	28

#	Article	IF	CITATIONS
55	Recyclable Thermoresponsive Polymerâ^'β-Glucosidase Conjugate with Intact Hydrolysis Activity. Biomacromolecules, 2018, 19, 2286-2293.	2.6	36
56	Sideâ€chain glycylglycineâ€based polymer for simultaneous sensing and removal of copper(II) from aqueous medium. Journal of Polymer Science Part A, 2018, 56, 914-921.	2.5	30
57	Amino acid-derived stimuli-responsive polymers and their applications. Polymer Chemistry, 2018, 9, 1257-1287.	1.9	143
58	Design of a novel FRET based fluorescent chemosensor and their application for highly sensitive detection of nitroaromatics. Sensors and Actuators B: Chemical, 2018, 255, 2628-2634.	4.0	55
59	Alternating Placement of <scp>d</scp> ―and <scp>l</scp> â€Alanine Moieties in the Polymer Sideâ€Chains. Macromolecular Chemistry and Physics, 2018, 219, 1800398.	1.1	11
60	Degradable Crystalline Polyperoxides from Fatty Acid Containing Styrenic Monomers. Macromolecules, 2018, 51, 8912-8921.	2.2	16
61	Monitoring Coil–Globule Transitions of Thermoresponsive Polymers by Using NMR Solvent Relaxation. Journal of Physical Chemistry B, 2018, 122, 6094-6100.	1.2	17
62	Degradable alternating polyperoxides from poly(ethylene glycol)â€substituted styrenic monomers with water solubility and thermoresponsiveness. Journal of Polymer Science Part A, 2018, 56, 2030-2038.	2.5	8
63	Enzyme responsive nucleotide functionalized silver nanoparticles with effective antimicrobial and anticancer activity. New Journal of Chemistry, 2017, 41, 1538-1548.	1.4	37
64	Side-chain amino acid based cationic polymer induced actin polymerization. Journal of Materials Chemistry B, 2017, 5, 1218-1226.	2.9	12
65	Side-Chain Amino Acid-Based Cationic Antibacterial Polymers: Investigating the Morphological Switching of a Polymer-Treated Bacterial Cell. ACS Omega, 2017, 2, 1633-1644.	1.6	45
66	Monitoring aggregation of a pH-responsive polymer via proton exchange. Physical Chemistry Chemical Physics, 2017, 19, 17360-17365.	1.3	6
67	Encapsulation induced aggregation: a self-assembly strategy for weakly pi-stacking chromophores. Chemical Communications, 2017, 53, 3994-3997.	2.2	13
68	A nonconjugated macromolecular luminogen for speedy, selective and sensitive detection of picric acid in water. Polymer Chemistry, 2017, 8, 7180-7187.	1.9	58
69	Cationic Copolymerization and Multicomponent Polymerization of Isobutylene with C4 Olefins. Macromolecules, 2017, 50, 8325-8333.	2.2	18
70	Functionalâ€Polymer Library through Postâ€Polymerization Modification of Copolymers Having Oleate and Pentafluorophenyl Pendants. Chemistry - A European Journal, 2017, 23, 15156-15165.	1.7	12
71	Supramolecular Interaction-Assisted Fluorescence and Tunable Stimuli-Responsiveness of <scp>l</scp> -Phenylalanine-Based Polymers. Langmuir, 2017, 33, 10588-10597.	1.6	8
72	Surface functionalized nanoâ€objects from oleic acidâ€derived stabilizer via nonâ€polar RAFT dispersion polymerization. Journal of Polymer Science Part A, 2017, 55, 263-273.	2.5	16

#	Article	IF	CITATIONS
73	Exploring amino acidâ€tethered polymethacrylates as CO ₂ â€sensitive macromolecules: A concealed property. Journal of Polymer Science Part A, 2016, 54, 2794-2803.	2.5	9
74	Sideâ€Chain Aminoâ€Acidâ€Derived Cationic Chiral Polymers by Controlled Radical Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 365-379.	1.1	40
75	Polymerâ€Chlorambucil Drug Conjugates: A Dynamic Platform of Anticancer Drug Delivery. Macromolecular Rapid Communications, 2016, 37, 1015-1020.	2.0	21
76	Leucineâ€Based Block Copolymer Nanoâ€Objects <i>via</i> Polymerizationâ€Induced Selfâ€Assembly (PISA). Macromolecular Symposia, 2016, 369, 101-107.	0.4	8
77	POSS end-linked peptide-functionalized poly(É›-caprolactone)s and their inclusion complexes with α-cyclodextrin. Journal of Polymer Science Part A, 2016, 54, 3643-3651.	2.5	3
78	Polyelectrolyte Gel Swelling and Conductivity vs Counterion Type, Cross-Linking Density, and Solvent Polarity. Macromolecules, 2016, 49, 6630-6643.	2.2	50
79	POSS semitelechelic Aβ17–19 peptide initiated helical polypeptides and their structural diversity in aqueous medium. Polymer Chemistry, 2016, 7, 6231-6240.	1.9	11
80	Conventional fluorophore-free dual pH- and thermo-responsive luminescent alternating copolymer. Polymer Chemistry, 2016, 7, 6895-6900.	1.9	55
81	POSS tethered hybrid "inimer―derived hyperbranched and star-shaped polymers via SCVP-RAFT technique. Polymer, 2016, 97, 113-121.	1.8	18
82	Solvent-dependent self-assembly behaviour of block copolymers having side-chain amino acid and fatty acid block segments. Reactive and Functional Polymers, 2016, 99, 26-34.	2.0	16
83	Self-assembly of well-defined fatty acid based amphiphilic thermoresponsive random copolymers. RSC Advances, 2016, 6, 19322-19330.	1.7	25
84	Amino acid containing cross-linked co-polymer gels: pH, thermo and salt responsiveness. Polymer, 2016, 85, 1-9.	1.8	27
85	A <i>β</i> _{17–20} Peptideâ€Guided Structuring of Polymeric Conjugates and Their pHâ€Triggered Dynamic Response. Macromolecular Bioscience, 2015, 15, 1447-1456.	2.1	17
86	Polyisobutylene containing organic/inorganic hybrid block copolymers and their crystalline behavior. Journal of Polymer Science Part A, 2015, 53, 1125-1133.	2.5	9
87	The effect of various catalysts on the monomer reactivity ratios in oxidative copolymerization of styrene and <i>α</i> â€methylstyrene. Polymer International, 2015, 64, 541-546.	1.6	2
88	POSS-induced enhancement of mechanical strength in RAFT-made thermoresponsive hydrogels. Polymer Chemistry, 2015, 6, 5077-5085.	1.9	35
89	Dynamic covalent cross-linked polymer gels through the reaction between side-chain β-keto ester and primary amine groups. Reactive and Functional Polymers, 2015, 93, 148-155.	2.0	16
90	Polymerization-induced self-assembly driving chiral nanostructured materials. Polymer Chemistry, 2015, 6, 6152-6162.	1.9	53

#	Article	IF	CITATIONS
91	Controlled synthesis of amino-acid based tadpole-shaped organic/inorganic hybrid polymers and their self-assembly in aqueous media. European Polymer Journal, 2015, 67, 274-283.	2.6	25
92	Exploring the post-polymerization modification of side-chain amino acid containing polymers via Michael addition reactions. Reactive and Functional Polymers, 2015, 91-92, 35-42.	2.0	18
93	Synthesis and Selfâ€Assembly of Polyisobutylene Based Thermoresponsive Diblock Copolymers <i>via</i> Combination of Cationic and RAFT Polymerizations. Macromolecular Symposia, 2015, 349, 65-73.	0.4	10
94	Polyisobutylene-Based pH-Responsive Self-Healing Polymeric Gels. ACS Applied Materials & Interfaces, 2015, 7, 8779-8788.	4.0	69
95	Kinetic and Mechanistic Studies of the Polymerization of Isobutylene Catalyzed by EtAlCl ₂ /Bis(2-chloroethyl) Ether Complex in Hexanes. Macromolecules, 2015, 48, 5474-5480.	2.2	30
96	Carbohydrate-Conjugated Amino Acid-Based Fluorescent Block Copolymers: Their Self-Assembly, pH Responsiveness, and/or Lectin Recognition. Langmuir, 2015, 31, 9422-9431.	1.6	28
97	Visualizing Phase Transition Behavior of Dilute Stimuli Responsive Polymer Solutions via Mueller Matrix Polarimetry. Analytical Chemistry, 2015, 87, 9120-9125.	3.2	8
98	Synthetic polymeric variant of S-adenosyl methionine synthetase. Polymer Chemistry, 2015, 6, 7796-7800.	1.9	22
99	Chiral copoly(methacrylate)s carrying amino acid pendants in the side-chains. European Polymer Journal, 2015, 73, 237-246.	2.6	8
100	Synthesis of amino acid based covalently cross-linked polymeric gelsÂusing tetrakis(hydroxymethyl) phosphonium chloride as a cross-linker. Polymer, 2015, 58, 1-8.	1.8	43
101	Synthesis of highly reactive polyisobutylene with FeCl ₃ /ether complexes in hexane; kinetic and mechanistic studies. Polymer Chemistry, 2015, 6, 322-329.	1.9	30
102	Controlled RAFT synthesis of side-chain oleic acid containing polymers and their post-polymerization functionalization. RSC Advances, 2014, 4, 56415-56423.	1.7	28
103	One step, microwave assisted green synthesis of biocompatible carbon quantum dots and their composites with [$\hat{l}\pm\hat{a}^{2}PW12O403\hat{a}^{2}$] for visible light photocatalysis. , 2014, , .		Ο
104	<i>Ortho</i> - and <i>meta</i> -substituted polystyrene polyperoxides: synthesis, characterization and thermal decomposition studies. Polymer International, 2014, 63, 746-751.	1.6	5
105	Fluorescent labelled dual-stimuli (pH/thermo) responsive self-assembled side-chain amino acid based polymers. Polymer, 2014, 55, 824-832.	1.8	41
106	Remarkable Swelling Capability of Amino Acid Based Cross-Linked Polymer Networks in Organic and Aqueous Medium. ACS Applied Materials & Interfaces, 2014, 6, 4233-4241.	4.0	75
107	Specific Counterion Repercussions on the Thermal, pH-Response, and Electrochemical Properties of Side-Chain Leucine Based Chiral Polyelectrolytes. Langmuir, 2014, 30, 13430-13437.	1.6	11
108	Controlled synthesis of β-sheet polymers based on side-chain amyloidogenic short peptide segments <i>via</i> RAFT polymerization. Polymer Chemistry, 2014, 5, 6039-6050.	1.9	18

#	Article	IF	CITATIONS
109	Facile RAFT synthesis of side-chain amino acids containing pH-responsive hyperbranched and star architectures. Polymer Chemistry, 2014, 5, 6365-6378.	1.9	56
110	Synthesis via RAFT polymerization of thermo- and pH-responsive random copolymers containing cholic acid moieties and their self-assembly in water. Polymer Chemistry, 2014, 5, 1275-1284.	1.9	76
111	Tryptophan containing covalently cross-linked polymeric gels with fluorescence and pH-induced reversible sol–gel transition properties. Polymer Chemistry, 2014, 5, 3624.	1.9	43
112	Synthesis of a Polymer Bearing Several Coumarin Dyes along the Side Chain and Study of its Fluorescence in Pure and Binary Solvent Mixtures as well as Aqueous Surfactant Solutions. Journal of Physical Chemistry B, 2014, 118, 4683-4692.	1.2	4
113	Main-chain sulphur containing water soluble poly(N-isopropylacrylamide-co-N,N′-dimethylacrylamide) Tj ETQq1	1.0.7843 1.8	14 rgBT /Ove
114	pH responsive polymers with amino acids in the side chains and their potential applications. Journal of Applied Polymer Science, 2014, 131, .	1.3	76
115	Swelling properties of amino acid containing cross-linked polymeric organogels and their respective polyelectrolytic hydrogels with pH and salt responsive property. Polymer, 2014, 55, 5425-5434.	1.8	39
116	Polyisobutylene-Based Helical Block Copolymers with pH-Responsive Cationic Side-Chain Amino Acid Moieties by Tandem Living Polymerizations. Macromolecules, 2013, 46, 5861-5870.	2.2	66
117	Cationic polymerization of isobutylene by FeCl3/ether complexes in hexanes: AnÂinvestigation of the steric and electronic effects of ethers. Polymer, 2013, 54, 4858-4863.	1.8	42
118	<i>N</i> â€Hydroxyphthalimideâ€Mediated Oxidation of Styrene by Molecular Oxygen. Macromolecular Chemistry and Physics, 2013, 214, 2181-2188.	1.1	8
119	RAFT polymerization of methacrylates containing a tryptophan moiety: controlled synthesis of biocompatible fluorescent cationic chiral polymers with smart pH-responsiveness. Polymer Chemistry, 2013, 4, 1141-1152.	1.9	54
120	Dual pH and temperature responsive helical copolymer libraries with pendant chiral leucine moieties. Polymer Chemistry, 2013, 4, 4052.	1.9	62
121	RAFT polymerization of fatty acid containing monomers: controlled synthesis of polymers from renewable resources. RSC Advances, 2013, 3, 24983.	1.7	54
122	Controlled synthesis of pH responsive cationic polymers containing side-chain peptide moieties viaRAFT polymerization and their self-assembly. Journal of Materials Chemistry B, 2013, 1, 946-957.	2.9	50
123	Thermal degradation kinetics of thermoresponsive poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) copolymers prepared via RAFT polymerization. Journal of Thermal Analysis and Calorimetry, 2013, 111, 753-761.	2.0	57
124	Precision Control of Temperature Response by Copolymerization of Di(Ethylene Glycol) Acrylate and an Acrylamide Comonomer. Macromolecular Chemistry and Physics, 2013, 214, 272-279.	1.1	46
125	Poly(9-vinyl anthracene peroxide): Synthesis, characterization, degradation and application as macroinitiator for the polymerization of methyl methacrylate. Polymer, 2013, 54, 2652-2657.	1.8	13
126	Controlled Synthesis of Amino Acid-Based pH-Responsive Chiral Polymers and Self-Assembly of Their Block Copolymers. Langmuir, 2013, 29, 2764-2774.	1.6	82

#	Article	IF	CITATIONS
127	CdS Quantum Dots Doped Tuning of Deswelling Kinetics of Thermoresponsive Hydrogels Based on Poly(2-(2-methoxyethoxy)ethyl methacrylate). Journal of Physical Chemistry B, 2013, 117, 16292-16302.	1.2	16
128	Side-Chain Amino-Acid-Based pH-Responsive Self-Assembled Block Copolymers for Drug Delivery and Gene Transfer. Langmuir, 2013, 29, 15375-15385.	1.6	57
129	Synthesis, characterization and thermal degradation of dual temperature―and pHâ€sensitive RAFTâ€made copolymers of <i>N</i> , <i>N</i> ,die€(dimethylamino)ethyl methacrylate and methyl methacrylate. Polymer International, 2013, 62, 463-473.	1.6	65
130	Water soluble polyperoxides from 2-(2-methoxyethoxy)ethyl methacrylate: influence of molecular oxygen on thermoresponsive properties and thermal degradation. Chemical Communications, 2012, 48, 4229.	2.2	14
131	Cationic methacrylate polymers containing chiral amino acid moieties: controlled synthesis via RAFT polymerization. Polymer Chemistry, 2012, 3, 1239.	1.9	86
132	Synthesis and characterization of a biodegradable polymer prepared <i>via</i> radical copolymerization of 2-(acetoacetoxy)ethyl methacrylate and molecular oxygen. Polymer Chemistry, 2012, 3, 182-189.	1.9	27
133	Swelling-Induced Optical Anisotropy of Thermoresponsive Hydrogels Based on Poly(2-(2-methoxyethoxy)ethyl methacrylate): Deswelling Kinetics Probed by Quantitative Mueller Matrix Polarimetry. Journal of Physical Chemistry B, 2012, 116, 13913-13921.	1.2	20
134	Copolyperoxides of 2-(acetoacetoxy)ethyl methacrylate with methyl methacrylate and styrene; Synthesis, characterization, thermal analysis, and reactivity ratios. Polymer, 2012, 53, 2583-2590.	1.8	16
135	Oxidative polymerization of para-substituted styrene derivatives: Synthesis, characterization and kinetics study. Polymer, 2012, 53, 3687-3694.	1.8	6
136	Biodegradation and <i>In Vitro</i> Biocompatibility of Polyperoxides: Alternating Co-Polymers of Vinyl Monomers and Molecular Oxygen. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2105-2117.	1.9	13
137	Kinetic and thermochemical study of the oxidative polymerization of α-substituted styrenes. Polymer Bulletin, 2012, 69, 149-161.	1.7	8
138	Thermoresponsive Block Copolymer–Protein Conjugates Prepared by Graftingâ€from via RAFT Polymerization. Macromolecular Rapid Communications, 2011, 32, 354-359.	2.0	89
139	Conjugation of RAFT-generated polymers to proteins by two consecutive thiol–ene reactions. Polymer Chemistry, 2010, 1, 854.	1.9	140
140	Boronic Acid-Terminated Polymers: Synthesis by RAFT and Subsequent Supramolecular and Dynamic Covalent Self-Assembly. Macromolecules, 2009, 42, 5614-5621.	2.2	100
141	End group transformations of RAFTâ€generated polymers with bismaleimides: Functional telechelics and modular block copolymers. Journal of Polymer Science Part A, 2008, 46, 5093-5100.	2.5	217
142	Responsive Polymerâ€Protein Bioconjugates Prepared by RAFT Polymerization and Copperâ€Catalyzed Azideâ€Alkyne Click Chemistry. Macromolecular Rapid Communications, 2008, 29, 1172-1176.	2.0	178
143	Folate-Conjugated Thermoresponsive Block Copolymers: Highly Efficient Conjugation and Solution Self-Assembly. Biomacromolecules, 2008, 9, 1064-1070.	2.6	198
144	Temperature-Regulated Activity of Responsive Polymerâ^'Protein Conjugates Prepared by Grafting-from via RAFT Polymerization. Journal of the American Chemical Society, 2008, 130, 11288-11289.	6.6	391

#	Article	IF	CITATIONS
145	Relative Reactivity of C4 Olefins toward the Polyisobutylene Cation. Macromolecules, 2006, 39, 6861-6870.	2.2	52
146	Carbocationic Polymerization of Isobutylene Using Methylaluminum Bromide Coinitiators:Â Synthesis of Bromoallyl Functional Polyisobutylene. Macromolecules, 2006, 39, 7527-7533.	2.2	43
147	Synthesis of Halogen-Free Polyisobutylene by in situ Hydride Transfer to Living Polyisobutylene from Tributylsilane. Polymer Bulletin, 2006, 56, 27-35.	1.7	5
148	Determination of the Absolute Rate Constants of Propagation for Ion Pairs and Free Ions in the Living Cationic Polymerization of Isobutyleneâ€. Macromolecules, 2005, 38, 9897-9900.	2.2	21
149	Determination of the Propagation Rate Constant in the Carbocationic Polymerization of 2,4,6-Trimethylstyrene. Macromolecules, 2005, 38, 41-46.	2.2	31
150	Determination of the Absolute Rate Constant of Propagation for Ion Pairs in the Cationic Polymerization ofp-Methylstyrene. Macromolecules, 2005, 38, 5498-5505.	2.2	25
151	Thermal degradation kinetics of vinyl polyperoxide copolymers. Polymer Degradation and Stability, 2004, 84, 173-179.	2.7	18
152	Simple Synthesis of a Weak Nucleophilic Base (4-Ethyl-2,6-diisopropyl-3,5-dimethylpyridine) Evidencing a Double Janus Group Effect. Journal of Organic Chemistry, 2004, 69, 536-542.	1.7	16
153	Determination of the Absolute Rate Constants of Propagation for Ion Pairs in the Carbocationic Polymerization ofp-Chlorostyrene. Macromolecules, 2004, 37, 9290-9294.	2.2	19
154	Living Carbocationic Polymerization ofp-Methoxystyrene Usingp-Methoxystyrene Hydrochloride/SnBr4Initiating System:A Determination of the Absolute Rate Constant of Propagation for Ion Pairs. Macromolecules, 2004, 37, 7930-7937.	2.2	45
155	Determination of Rate Constants in the Carbocationic Polymerization of Styrene:  Effect of Temperature, Solvent Polarity, and Lewis Acid. Macromolecules, 2004, 37, 4422-4433.	2.2	45
156	Effect of Temperature, Solvent Polarity, and Nature of Lewis Acid on the Rate Constants in the Carbocationic Polymerization of Isobutylene. Macromolecules, 2003, 36, 8282-8290.	2.2	73
157	Synthesis, spectral characterization, and thermochemical studies of poly(phenyl methacrylate) Tj ETQq1 1 0.784	1314 rgBT 1.3	/Overlock 10
158	para-Substituted Poly(styrene peroxide)s: Synthesis, Characterization, Thermal Reactivities, and Chain Dynamics Studies in Solution. Macromolecular Chemistry and Physics, 2002, 203, 420-426.	1.1	12
159	Determination of the Reactivity Ratios for the Oxidative Copolymerizations of Indene with Methyl, Ethyl and Butyl Acrylates. Macromolecular Chemistry and Physics, 2002, 203, 573-579.	1.1	5
160	High-Pressure Kinetics of Oxidative Copolymerization of Styrene with -Methylstyrene. Macromolecular Chemistry and Physics, 2002, 203, 2218-2224.	1.1	12
161	Free radical oxidative copolymerization of indene with vinyl acetate and isopropenyl acetate: Synthesis and characterization. Journal of Applied Polymer Science, 2002, 86, 639-646.	1.3	11
162	Thermal degradation kinetics of para-substituted poly (styrene peroxide)s in solution. Journal of Applied Polymer Science, 2002, 86, 957-961.	1.3	9

PRIYADARSI DE

#	Article	IF	CITATIONS
163	Oxidative copolymerization of indene withp-tert-butylstyrene: Synthesis, characterization, thermal analysis, and reactivity ratios. Journal of Polymer Science Part A, 2002, 40, 9-18.	2.5	7
164	Reactivity ratios for the terpolymerization of methyl methacrylate, vinyl acetate, and molecular oxygen. Journal of Polymer Science Part A, 2002, 40, 564-572.	2.5	9
165	Synthesis and characterization of copolyperoxides of indene with styrene, ?-methylstyrene, and ?-phenylstyrene. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2004-2017.	2.4	7
166	Thermal degradation studies of para-substituted poly(styrene peroxide)s. Polymer Degradation and Stability, 2002, 76, 511-514.	2.7	7
167	Reactivity ratios for the oxidative copolymerizations of indene with methyl methacrylate and methacrylonitrile. European Polymer Journal, 2002, 38, 847-855.	2.6	19

Synthesis, structural characterization, thermal studies and chain dynamics of poly(methacrylonitrile) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{1}{19}$