Victor Goncalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2324684/publications.pdf

Version: 2024-02-01

430874 477307 30 938 18 29 citations h-index g-index papers 31 31 31 1591 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Site-Specific, Platform-Based Conjugation Strategy for the Synthesis of Dual-Labeled Immunoconjugates for Bimodal PET/NIRF Imaging of HER2-Positive Tumors. Bioconjugate Chemistry, 2022, 33, 530-540.	3.6	10
2	Site-Specific Dual-Labeling of a VHH with a Chelator and a Photosensitizer for Nuclear Imaging and Targeted Photodynamic Therapy of EGFR-Positive Tumors. Cancers, 2021, 13, 428.	3.7	18
3	Positron Emission Tomography Imaging of Neurotensin Receptor-Positive Tumors with 68Ga-Labeled Antagonists: The Chelate Makes the Difference Again. Journal of Medicinal Chemistry, 2021, 64, 8564-8578.	6.4	8
4	Additional information on "Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for 89Zr-immunoPET― European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 505-506.	6.4	2
5	Design of Bimodal Ligands of Neurotensin Receptor 1 for Positron Emission Tomography Imaging and Fluorescence-Guided Surgery of Pancreatic Cancer. Journal of Medicinal Chemistry, 2020, 63, 2426-2433.	6.4	23
6	Synthesis and evaluation of zirconium-89 labelled and long-lived GLP-1 receptor agonists for PET imaging. Nuclear Medicine and Biology, 2020, 82-83, 49-56.	0.6	4
7	Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for 89Zr-immunoPET. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1966-1977.	6.4	54
8	Modular Assembly of Multimodal Imaging Agents through an Inverse Electron Demand Diels–Alder Reaction. Bioconjugate Chemistry, 2019, 30, 888-897.	3.6	21
9	Site-specific near-infrared fluorescent labelling of proteins on cysteine residues with (i>meso-chloro-substituted heptamethine cyanine dyes. Organic and Biomolecular Chemistry, 2018, 16, 8831-8836.	2.8	31
10	Siteâ€Specific Dual Labeling of Proteins on Cysteine Residues with Chlorotetrazines. Angewandte Chemie, 2018, 130, 10806-10810.	2.0	9
11	Siteâ€Specific Dual Labeling of Proteins on Cysteine Residues with Chlorotetrazines. Angewandte Chemie - International Edition, 2018, 57, 10646-10650.	13.8	47
12	⁸⁹ Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art ⁸⁹ Zr Radiochemistry. Bioconjugate Chemistry, 2017, 28, 2211-2223.	3.6	146
13	Structure-guided optimization of quinoline inhibitors of Plasmodium N-myristoyltransferase. MedChemComm, 2017, 8, 191-197.	3.4	14
14	Direct subphthalocyanine conjugation to bombesin vs. indirect conjugation to its lipidic nanocarrier. Organic and Biomolecular Chemistry, 2016, 14, 4511-4518.	2.8	14
15	BODIPY: A Highly Versatile Platform for the Design of Bimodal Imaging Probes. Chemistry - A European Journal, 2015, 21, 13091-13099.	3.3	25
16	MAâ€NOTMP: A Triazacyclononane Trimethylphosphinate Based Bifunctional Chelator for Gallium Radiolabelling of Biomolecules. ChemMedChem, 2015, 10, 1475-1479.	3.2	10
17	(R)-NODAGA-PSMA: A Versatile Precursor for Radiometal Labeling and Nuclear Imaging of PSMA-Positive Tumors. PLoS ONE, 2015, 10, e0145755.	2.5	46
18	Towards the elaboration of new gold-based optical theranostics. Dalton Transactions, 2015, 44, 4874-4883.	3.3	32

#	Article	IF	CITATION
19	DMAPâ€BODIPY Alkynes: A Convenient Tool for Labeling Biomolecules for Bimodal PET–Optical Imaging. Chemistry - A European Journal, 2014, 20, 12933-12944.	3.3	25
20	Structure-Based Design of Potent and Selective <i>Leishmania N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 8664-8670.	6.4	56
21	Discovery of Plasmodium vivax <i>N</i> -Myristoyltransferase Inhibitors: Screening, Synthesis, and Structural Characterization of their Binding Mode. Journal of Medicinal Chemistry, 2012, 55, 3578-3582.	6.4	65
22	A fluorescence-based assay for N-myristoyltransferase activity. Analytical Biochemistry, 2012, 421, 342-344.	2.4	69
23	Targeting the Proangiogenic VEGF-VEGFR Protein-Protein Interface with Drug-like Compounds by In Silico and InÂVitro Screening. Chemistry and Biology, 2011, 18, 1631-1639.	6.0	38
24	Biochemical and Structural Analysis of the Binding Determinants of a Vascular Endothelial Growth Factor Receptor Peptidic Antagonist. Journal of Medicinal Chemistry, 2010, 53, 4428-4440.	6.4	31
25	Total chemical synthesis of the D2 domain of human VEGF receptor 1. Journal of Peptide Science, 2009, 15, 417-422.	1.4	10
26	Cyclic peptides as VEGF receptor antagonist. Advances in Experimental Medicine and Biology, 2009, 611, 479-480.	1.6	0
27	Structureâ€based design of a bicyclic peptide antagonist of the vascular endothelial growth factor receptors. Journal of Peptide Science, 2008, 14, 767-772.	1.4	12
28	Rational Design, Structure, and Biological Evaluation of Cyclic Peptides Mimicking the Vascular Endothelial Growth Factor. Journal of Medicinal Chemistry, 2007, 50, 5135-5146.	6.4	33
29	On-resin cyclization of peptide ligands of the Vascular Endothelial Growth Factor Receptor 1 by copper(I)-catalyzed 1,3-dipolar azide–alkyne cycloaddition. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5590-5594.	2.2	41
30	Development of a chemiluminescent screening assay for detection of vascular endothelial growth factor receptor 1 ligands. Analytical Biochemistry, 2007, 366, 108-110.	2.4	42