Guifang Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2324405/publications.pdf

Version: 2024-02-01

32	1,052	21	32
papers	citations	h-index	g-index
32	32	32	1184 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Physicochemical Properties and in vitro Digestibility of Myofibrillar Proteins From the Scallop Mantle (Patinopecten yessoensis) Based on Ultrahigh Pressure Treatment. Frontiers in Nutrition, 2022, 9, 873578.	3.7	2
2	Simultaneous determination of 14 bioactive citrus flavonoids using thin-layer chromatography combined with surface enhanced Raman spectroscopy. Food Chemistry, 2021, 338, 128115.	8.2	30
3	Influence of triacylglycerol on the physical stability and digestion fate of triacylglycerol–bergamot mixed-oil emulsions with nobiletin. LWT - Food Science and Technology, 2021, 144, 111253.	5.2	5
4	Effects of Molecular Distillation on the Chemical Components, Cleaning, and Antibacterial Abilities of Four Different Citrus Oils. Frontiers in Nutrition, 2021, 8, 731724.	3.7	7
5	Effect of ultrasonic treatment on the structure and functional properties of mantle proteins from scallops (Patinopecten yessoensis). Ultrasonics Sonochemistry, 2021, 79, 105770.	8.2	30
6	Effects of hydrosoluble calcium ions and organic acids on citrus oil emulsions stabilized with citrus pectin. Food Hydrocolloids, 2020, 100, 105413.	10.7	25
7	The structure–property relationships of acid- and alkali-extracted grapefruit peel pectins. Carbohydrate Polymers, 2020, 229, 115524.	10.2	88
8	Effects of spray-drying temperature on the physicochemical properties and polymethoxyflavone loading efficiency of citrus oil microcapsules. LWT - Food Science and Technology, 2020, 133, 109954.	5.2	23
9	Naringin Alleviates Atherosclerosis in ApoE ^{–/–} Mice by Regulating Cholesterol Metabolism Involved in Gut Microbiota Remodeling. Journal of Agricultural and Food Chemistry, 2020, 68, 12651-12660.	5.2	52
10	AlkaliÂ+Âcellulase-extracted citrus pectins exhibit compact conformation and good fermentation properties. Food Hydrocolloids, 2020, 108, 106079.	10.7	55
11	Effect of mesoscopic structure of citrus pectin on its emulsifying properties: Compactness is more important than size. Journal of Colloid and Interface Science, 2020, 570, 80-88.	9.4	40
12	Gold Nanobones Enhanced Ultrasensitive Surface-Enhanced Raman Scattering Aptasensor for Detecting <i>Escherichia coli</i> /i> O157:H7. ACS Sensors, 2020, 5, 588-596.	7.8	78
13	Microencapsulation of Polymethoxyflavones in Citrus Oil Emulsion-based Delivery Systems (P17-004-19). Current Developments in Nutrition, 2019, 3, nzz038.P17-004-19.	0.3	1
14	Characterization of polymethoxyflavone demethylation during drying processes of citrus peels. Food and Function, 2019, 10, 5707-5717.	4.6	24
15	Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chemistry, 2019, 289, 340-350.	8.2	34
16	Characterization of physical properties and electronic sensory analyses of citrus oil-based nanoemulsions. Food Research International, 2018, 109, 149-158.	6.2	43
17	Simultaneous characterization of chemical structures and bioactivities of citrus-derived components using SERS barcodes. Food Chemistry, 2018, 240, 743-750.	8.2	10
18	Citrus Oil Emulsions Stabilized by Citrus Pectin: The Influence Mechanism of Citrus Variety and Acid Treatment. Journal of Agricultural and Food Chemistry, 2018, 66, 12978-12988.	5.2	34

#	Article	IF	CITATIONS
19	Emulsifying stability properties of octenyl succinic anhydride (OSA) modified waxy starches with different molecular structures. Food Hydrocolloids, 2018, 85, 248-256.	10.7	42
20	The stability of three different citrus oil-in-water emulsions fabricated by spontaneous emulsification. Food Chemistry, 2018, 269, 577-587.	8.2	38
21	Adaptive Structured Pickering Emulsions and Porous Materials Based on Cellulose Nanocrystal Surfactants. Angewandte Chemie, 2018, 130, 13748-13752.	2.0	25
22	Adaptive Structured Pickering Emulsions and Porous Materials Based on Cellulose Nanocrystal Surfactants. Angewandte Chemie - International Edition, 2018, 57, 13560-13564.	13.8	89
23	Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems. Journal of Agricultural and Food Chemistry, 2017, 65, 1732-1739.	5.2	38
24	Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions. Journal of Agricultural and Food Chemistry, 2017, 65, 7781-7789.	5.2	26
25	Chemical Mapping of Essential Oils, Flavonoids and Carotenoids in Citrus Peels by Raman Microscopy. Journal of Food Science, 2017, 82, 2840-2846.	3.1	27
26	Rapid screening for ricin toxin on letter papers using surface enhanced Raman spectroscopy. Talanta, 2017, 162, 552-557.	5.5	14
27	Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel. International Journal of Analytical Chemistry, 2017, 2017, 1-11.	1.0	20
28	The stability and degradation mechanism of sulforaphene in solvents. Food Chemistry, 2016, 199, 301-306.	8.2	13
29	The mechanism of sulforaphene degradation to different water contents. Food Chemistry, 2016, 194, 1022-1027.	8.2	25
30	The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying. Carbohydrate Polymers, 2015, 122, 5-10.	10.2	24
31	Metabolic regulation of \hat{l} ±-linolenic acid on \hat{l}^2 -carotene synthesis in Blakeslea trispora revealed by a GC-MS-based metabolomic approach. RSC Advances, 2015, 5, 63193-63201.	3.6	3
32	Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids and Surfaces B: Biointerfaces, 2013, 112, 492-498.	5.0	87