
Simon P Brooks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2324286/publications.pdf Version: 2024-02-01

SIMON P ROOKS

#	Article	IF	CITATIONS
1	Tests to assess motor phenotype in mice: a user's guide. Nature Reviews Neuroscience, 2009, 10, 519-529.	4.9	513
2	Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand. Cell Metabolism, 2018, 27, 439-449.e5.	7.2	439
3	Behavioural profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests. Genes, Brain and Behavior, 2005, 4, 307-317.	1.1	139
4	Phosphorylation of Parkin at serine 65 is essential for its activation <i>in vivo</i> . Open Biology, 2018, 8, 180108.	1.5	81
5	Behavioural profiles of inbred mouse strains used as transgenic backgrounds. I: motor tests. Genes, Brain and Behavior, 2004, 3, 206-215.	1.1	79
6	Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington's disease mouse model. Experimental Neurology, 2013, 248, 457-469.	2.0	59
7	Brain gene expression correlates with changes in behavior in the R6/1 mouse model of Huntington's disease. Genes, Brain and Behavior, 2008, 7, 288-299.	1.1	58
8	The operant serial implicit learning task reveals early onset motor learning deficits in the HdhQ92knock-in mouse model of Huntington's disease. European Journal of Neuroscience, 2007, 25, 551-558.	1.2	56
9	Longitudinal analysis of the behavioural phenotype in R6/1 (C57BL/6J) Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 94-103.	1.4	53
10	Longitudinal analysis of the behavioural phenotype in YAC128 (C57BL/6J) Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 113-120.	1.4	50
11	Assessment of Motor Coordination and Balance in Mice Using the Rotarod, Elevated Bridge, and Footprint Tests. Current Protocols in Mouse Biology, 2012, 2, 37-53.	1.2	49
12	Selective extra-dimensional set shifting deficit in a knock-in mouse model of Huntington's disease. Brain Research Bulletin, 2006, 69, 452-457.	1.4	42
13	Selective cognitive impairment in the YAC128 Huntington's disease mouse. Brain Research Bulletin, 2012, 88, 121-129.	1.4	42
14	Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 104-112.	1.4	42
15	Optimising Golgi–Cox staining for use with perfusion-fixed brain tissue validated in the zQ175 mouse model of Huntington's disease. Journal of Neuroscience Methods, 2016, 265, 81-88.	1.3	39
16	Longitudinal analysis of the behavioural phenotype in HdhQ92 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 148-155.	1.4	37
17	Time course of choice reaction time deficits in the HdhQ92 knock-in mouse model of Huntington's disease in the operant Serial Implicit Learning Task (SILT). Behavioural Brain Research, 2008, 189, 317-324.	1.2	36
18	Light and electron microscopic characterization of the evolution of cellular pathology in YAC128 Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 137-147.	1.4	36

SIMON P BROOKS

#	Article	IF	CITATIONS
19	Comparative analysis of pathology and behavioural phenotypes in mouse models of Huntington's disease. Brain Research Bulletin, 2012, 88, 81-93.	1.4	34
20	Free operant and discrete trial performance of mice in the nine-hole box apparatus: validation using amphetamine and scopolamine. Psychopharmacology, 2004, 174, 396-405.	1.5	33
21	Rule learning, visuospatial function and motor performance in the HdhQ92 knock-in mouse model of Huntington's disease. Behavioural Brain Research, 2009, 203, 215-222.	1.2	33
22	Light and electron microscopic characterization of the evolution of cellular pathology in the Hdh(CAG)150 Huntington's disease knock-in mouse. Brain Research Bulletin, 2012, 88, 189-198.	1.4	31
23	Gene expression and behaviour in mouse models of HD. Brain Research Bulletin, 2012, 88, 276-284.	1.4	28
24	Light and electron microscopic characterization of the evolution of cellular pathology in HdhQ92 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 171-181.	1.4	27
25	Profiles of motor and cognitive impairment in the transgenic rat model of Huntington's disease. Brain Research Bulletin, 2012, 88, 223-236.	1.4	25
26	Implicit learning in a serial choice visual discrimination task in the operant 9-hole box by intact and striatal lesioned mice. Behavioural Brain Research, 2005, 159, 313-322.	1.2	24
27	Proteomic changes in the brains of Huntington's disease mouse models reflect pathology and implicate mitochondrial changes. Brain Research Bulletin, 2012, 88, 210-222.	1.4	23
28	The utilisation of operant delayed matching and non-matching to position for probing cognitive flexibility and working memory in mouse models of Huntington's disease. Journal of Neuroscience Methods, 2016, 265, 72-80.	1.3	23
29	Longitudinal analyses of operant performance on the serial implicit learning task (SILT) in the YAC128 Huntington's disease mouse line. Brain Research Bulletin, 2012, 88, 130-136.	1.4	22
30	Age-Dependent Maintenance of Motor Controland Corticostriatal Innervation by Death Receptor 3. Journal of Neuroscience, 2010, 30, 3782-3792.	1.7	21
31	Mouse Models of Huntington's Disease. Current Topics in Behavioral Neurosciences, 2013, 22, 101-133.	0.8	21
32	CTIP2-Regulated Reduction in PKA-Dependent DARPP32 Phosphorylation in Human Medium Spiny Neurons: Implications for Huntington Disease. Stem Cell Reports, 2019, 13, 448-457.	2.3	21
33	Identification of Novel Alternative Splicing Events in the Huntingtin Gene and Assessment of the Functional Consequences Using Structural Protein Homology Modelling. Journal of Molecular Biology, 2014, 426, 1428-1438.	2.0	19
34	Longitudinal analysis of gene expression and behaviour in the HdhQ150 mouse model of Huntington's disease. Brain Research Bulletin, 2012, 88, 199-209.	1.4	18
35	Striatal lesions in the mouse disrupt acquisition and retention, but not implicit learning, in the SILT procedural motor learning task. Brain Research, 2007, 1185, 179-188.	1.1	17
36	Early onset deficits on the delayed alternation task in the HdhQ92 knock-in mouse model of Huntington's disease. Brain Research Bulletin, 2012, 88, 156-162.	1.4	17

SIMON P BROOKS

#	Article	IF	CITATIONS
37	Five choice serial reaction time performance in the HdhQ92 mouse model of Huntington's disease. Brain Research Bulletin, 2012, 88, 163-170.	1.4	17
38	Loss of CRMP2 O-GlcNAcylation leads to reduced novel object recognition performance in mice. Open Biology, 2019, 9, 190192.	1.5	17
39	Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development. PLoS ONE, 2016, 11, e0155834.	1.1	16
40	Motivational, proteostatic and transcriptional deficits precede synapse loss, gliosis and neurodegeneration in the B6.HttQ111/+ model of Huntington's disease. Scientific Reports, 2017, 7, 41570.	1.6	16
41	A Longitudinal Operant Assessment of Cognitive and Behavioural Changes in the HdhQ111 Mouse Model of Huntington's Disease. PLoS ONE, 2016, 11, e0164072.	1.1	14
42	A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2016, 5, 149-161.	0.9	14
43	Cognitive training modifies disease symptoms in a mouse model of Huntington's disease. Experimental Neurology, 2016, 282, 19-26.	2.0	14
44	Bilateral striatal lesions disrupt performance in an operant delayed reinforcement task in rats. Brain Research Bulletin, 2012, 88, 251-260.	1.4	13
45	Motor Assessment in Huntington's Disease Mice. Methods in Molecular Biology, 2018, 1780, 121-141.	0.4	12
46	A novel extended sequence learning task (ESLeT) for rodents: Validation and the effects of amphetamine, scopolamine and striatal lesions. Brain Research Bulletin, 2012, 88, 237-250.	1.4	10
47	Cognitive deficits in animal models of basal ganglia disorders. Brain Research Bulletin, 2013, 92, 29-40.	1.4	10
48	Similar striatal gene expression profiles in the striatum of the YAC128 and HdhQ150 mouse models of Huntington's disease are not reflected in mutant Huntingtin inclusion prevalence. BMC Genomics, 2015, 16, 1079.	1.2	7
49	In Vivo MRI Evidence that Neuropathology is Attenuated by Cognitive Enrichment in the Yac128 Huntington's Disease Mouse Model. Journal of Huntington's Disease, 2015, 4, 149-160.	0.9	6
50	Huntingtin Subcellular Localisation Is Regulated by Kinase Signalling Activity in the StHdhQ111 Model of HD. PLoS ONE, 2015, 10, e0144864.	1.1	4
51	Lesions of the premotor and supplementary motor areas fail to prevent implicit learning in the operant serial implicit learning task. Brain Research, 2009, 1284, 116-124.	1.1	3