
Philippe Rocca-Serra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2324259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ELIXIR biovalidator for semantic validation of life science metadata. Bioinformatics, 2022, 38, 3141-3142.	4.1	1
2	Metabolomics: The Stethoscope for the Twenty-First Century. Medical Principles and Practice, 2021, 30, 301-310.	2.4	46
3	Road to effective data curation for translational research. Drug Discovery Today, 2021, 26, 626-630.	6.4	8
4	Barely sufficient practices in scientific computing. Patterns, 2021, 2, 100206.	5.9	5
5	ISA API: An open platform for interoperable life science experimental metadata. GigaScience, 2021, 10, .	6.4	19
6	Community standards for open cell migration data. GigaScience, 2020, 9, .	6.4	12
7	FAIR Principles: Interpretations and Implementation Considerations. Data Intelligence, 2020, 2, 10-29.	1.5	149
8	Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytologist, 2020, 227, 260-273.	7.3	84
9	The Data Tags Suite (DATS) model for discovering data access and use requirements. GigaScience, 2020, 9, .	6.4	9
10	Semantic concept schema of the linear mixed model of experimental observations. Scientific Data, 2020, 7, 70.	5.3	8
11	Helping the Consumers and Producers of Standards, Repositories and Policies to Enable FAIR Data. Data Intelligence, 2020, 2, 151-157.	1.5	10
12	An Open Ecosystem for Pervasive Use of Persistent Identifiers. , 2020, , .		5
13	Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nature Communications, 2019, 10, 3041.	12.8	131
14	Evaluating FAIR maturity through a scalable, automated, community-governed framework. Scientific Data, 2019, 6, 174.	5.3	82
15	PlatformTM, a standards-based data custodianship platform for translational medicine research. Scientific Data, 2019, 6, 149.	5.3	5
16	mzTab-M: A Data Standard for Sharing Quantitative Results in Mass Spectrometry Metabolomics. Analytical Chemistry, 2019, 91, 3302-3310.	6.5	43
17	Interoperable and scalable data analysis with microservices: applications in metabolomics. Bioinformatics, 2019, 35, 3752-3760.	4.1	22
18	FAIRsharing as a community approach to standards, repositories and policies. Nature Biotechnology, 2019, 37, 358-367.	17.5	228

Philippe Rocca-Serra

#	Article	IF	CITATIONS
19	Experiment design driven FAIRification of omics data matrices, an exemplar. Scientific Data, 2019, 6, 271.	5.3	14
20	PhenoMeNal: processing and analysis of metabolomics data in the cloud. GigaScience, 2019, 8, .	6.4	60
21	DataMed – an open source discovery index for finding biomedical datasets. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 300-308.	4.4	54
22	Data discovery with DATS: exemplar adoptions and lessons learned. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 13-16.	4.4	5
23	nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data. Analytical Chemistry, 2018, 90, 649-656.	6.5	50
24	Finding useful data across multiple biomedical data repositories using DataMed. Nature Genetics, 2017, 49, 816-819.	21.4	77
25	DATS, the data tag suite to enable discoverability of datasets. Scientific Data, 2017, 4, 170059.	5.3	67
26	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	1.6	19
27	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	1.6	11
28	Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data. PLoS Biology, 2017, 15, e2001414.	5.6	97
29	The Ontology for Biomedical Investigations. PLoS ONE, 2016, 11, e0154556.	2.5	217
30	BioSharing: curated and crowd-sourced metadata standards, databases and data policies in the life sciences. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw075.	3.0	84
31	Measures for interoperability of phenotypic data: minimum information requirements and formatting. Plant Methods, 2016, 12, 44.	4.3	109
32	The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 2016, 3, 160018.	5.3	8,670
33	MetaboLights: An Openâ€Access Database Repository for Metabolomics Data. Current Protocols in Bioinformatics, 2016, 53, 14.13.1-14.13.18.	25.8	147
34	The center for expanded data annotation and retrieval. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1148-1152.	4.4	74
35	Modeling a microbial community and biodiversity assay with OBO Foundry ontologies: the interoperability gains of a modular approach. Database: the Journal of Biological Databases and Curation, 2015, 2015, bau132-bau132.	3.0	5
36	From Peer-Reviewed to Peer-Reproduced in Scholarly Publishing: The Complementary Roles of Data Models and Workflows in Bioinformatics. PLoS ONE, 2015, 10, e0127612.	2.5	27

Philippe Rocca-Serra

#	Article	IF	CITATIONS
37	BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains. Journal of Biomedical Semantics, 2014, 5, 5.	1.6	47
38	The Risa R/Bioconductor package: integrative data analysis from experimental metadata and back again. BMC Bioinformatics, 2014, 15, S11.	2.6	22
39	EBI metagenomics—a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Research, 2014, 42, D600-D606.	14.5	127
40	linkedISA: semantic representation of ISA-Tab experimental metadata. BMC Bioinformatics, 2014, 15, S4.	2.6	49
41	Visual Compression of Workflow Visualizations with Automated Detection of Macro Motifs. IEEE Transactions on Visualization and Computer Graphics, 2013, 19, 2576-2585.	4.4	19
42	OntoMaton: a Bioportal powered ontology widget for Google Spreadsheets. Bioinformatics, 2013, 29, 525-527.	4.1	49
43	MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research, 2013, 41, D781-D786.	14.5	578
44	Standardizing data. Nature Nanotechnology, 2013, 8, 73-74.	31.5	19
45	Bio-GraphIIn: a graph-based, integrative and semantically-enabled repository for life science experimental data. EMBnet Journal, 2013, 19, 46.	0.6	9
46	graph2tab, a library to convert experimental workflow graphs into tabular formats. Bioinformatics, 2012, 28, 1665-1667.	4.1	7
47	Toward interoperable bioscience data. Nature Genetics, 2012, 44, 121-126.	21.4	362
48	Taxonomy-Based Glyph Design—with a Case Study on Visualizing Workflows of Biological Experiments. IEEE Transactions on Visualization and Computer Graphics, 2012, 18, 2603-2612.	4.4	51
49	On the evolving portfolio of community-standards and data sharing policies: turning challenges into new opportunities. GigaScience, 2012, 1, 10.	6.4	11
50	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 2011, 29, 415-420.	17.5	608
51	Overcoming the ontology enrichment bottleneck with Quick Term Templates. Applied Ontology, 2011, 6, 13-22.	2.0	7
52	Sharing and archiving nucleic acid structure mapping data. Rna, 2011, 17, 1204-1212.	3.5	28
53	Meeting Report: BioSharing at ISMB 2010. Standards in Genomic Sciences, 2010, 3, 254-258.	1.5	19
54	Meeting Report from the Second "Minimum Information for Biological and Biomedical Investigations― (MIBBI) workshop. Standards in Genomic Sciences, 2010, 3, 259-266.	1.5	32

PHILIPPE ROCCA-SERRA

#	Article	IF	CITATIONS
55	Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies. Genes and Nutrition, 2010, 5, 189-203.	2.5	64
56	Modeling biomedical experimental processes with OBI. Journal of Biomedical Semantics, 2010, 1, S7.	1.6	207
57	ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level. Bioinformatics, 2010, 26, 2354-2356.	4.1	247
58	Using Pathway Signatures as Means of Identifying Similarities among Microarray Experiments. PLoS ONE, 2009, 4, e4128.	2.5	25
59	Standards and infrastructure for managing experimental metadata. Nature Precedings, 2009, , .	0.1	0
60	'Omics Data Sharing. Science, 2009, 326, 234-236.	12.6	136
61	Owner controlled data exchange in nutrigenomic collaborations: the NuGO information network. Genes and Nutrition, 2009, 4, 113-122.	2.5	5
62	Towards interoperable reporting standards for omics data: hopes and hurdles. Summit on Translational Bioinformatics, 2009, 2009, 112-5.	0.7	1
63	Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nature Biotechnology, 2008, 26, 889-896.	17.5	506
64	The carcinoGENOMICS project: Critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays. Mutation Research - Reviews in Mutation Research, 2008, 659, 202-210.	5.5	60
65	The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology, 2007, 25, 1251-1255.	17.5	1,955
66	Metabolomics standards initiative: ontology working group work in progress. Metabolomics, 2007, 3, 249-256.	3.0	52
67	Standard reporting requirements for biological samples in metabolomics experiments: mammalian/inÂvivo experiments. Metabolomics, 2007, 3, 179-188.	3.0	67
68	Standard Annotation of Environmental OMICS Data: Application to the Transcriptomics Domain. OMICS A Journal of Integrative Biology, 2006, 10, 172-178.	2.0	21
69	A Strategy Capitalizing on Synergies: The Reporting Structure for Biological Investigation (RSBI) Working Group. OMICS A Journal of Integrative Biology, 2006, 10, 164-171.	2.0	33
70	Data storage: bringing us a step closer to data sharing?. British Journal of Nutrition, 2006, 95, 1237-1239.	2.3	2
71	Wrestling with SUMO and bio-ontologies. Nature Biotechnology, 2006, 24, 21-21.	17.5	8
72	A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB. BMC Bioinformatics, 2006, 7, 489.	2.6	185

PHILIPPE ROCCA-SERRA

#	Article	IF	CITATIONS
73	Development of FuGO: An Ontology for Functional Genomics Investigations. OMICS A Journal of Integrative Biology, 2006, 10, 199-204.	2.0	56
74	Defining best practice for microarray analyses in nutrigenomic studies. British Journal of Nutrition, 2005, 93, 425-432.	2.3	39
75	Chemical Effects in Biological Systems—Data Dictionary (CEBS-DD): A Compendium of Terms for the Capture and Integration of Biological Study Design Description, Conventional Phenotypes, and †Omics Data. Toxicological Sciences, 2005, 88, 585-601.	3.1	43
76	EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Research, 2004, 14, 160-169.	5.5	348
77	Standardization Initiatives in the (eco)toxicogenomics Domain: A Review. Comparative and Functional Genomics, 2004, 5, 633-641.	2.0	17
78	ArrayExpress: a public database of gene expression data at EBI. Comptes Rendus - Biologies, 2003, 326, 1075-1078.	0.2	69
79	ArrayExpressa public repository for microarray gene expression data at the EBI. Nucleic Acids Research, 2003, 31, 68-71.	14.5	727
80	ELIXIR and Toxicology: a community in development. F1000Research, 0, 10, 1129.	1.6	3