Seçkin Akın

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2323847/publications.pdf Version: 2024-02-01

SEÃSKIN AKÄ+N

#	Article	IF	CITATIONS
1	Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Science Advances, 2019, 5, eaaw2543.	10.3	524
2	Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells. Joule, 2019, 3, 205-214.	24.0	387
3	New Strategies for Defect Passivation in Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903090.	19.5	237
4	Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy and Environmental Science, 2018, 11, 2985-2992.	30.8	216
5	Stabilization of Highly Efficient and Stable Phaseâ€Pure FAPbl ₃ Perovskite Solar Cells by Molecularly Tailored 2Dâ€Overlayers. Angewandte Chemie - International Edition, 2020, 59, 15688-15694.	13.8	201
6	FAPbl ₃ â€Based Perovskite Solar Cells Employing Hexylâ€Based Ionic Liquid with an Efficiency Over 20% and Excellent Longâ€Term Stability. Advanced Functional Materials, 2020, 30, 2002964.	14.9	172
7	Poly(<i>N</i> , <i>N</i> ′â€bisâ€4â€butylphenylâ€ <i>N</i> , <i>N</i> ′â€bisphenyl)benzidineâ€Based Interfac Strategy Promoting Efficiency and Operational Stability of Perovskite Solar Cells in Regular Architecture. Advanced Materials, 2021, 33, e2006087.	cial Passiva 21.0	ation 128
8	Cesium lead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency. Nano Energy, 2019, 60, 557-566.	16.0	121
9	Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%. Nano Energy, 2021, 87, 106157.	16.0	115
10	Moistureâ€Resistant FAPbI ₃ Perovskite Solar Cell with 22.25 % Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation. ChemSusChem, 2021, 14, 1176-1183.	6.8	101
11	Metal oxide electron transport materials for perovskite solar cells: a review. Environmental Chemistry Letters, 2021, 19, 2185-2207.	16.2	98
12	Hysteresis-Free Planar Perovskite Solar Cells with a Breakthrough Efficiency of 22% and Superior Operational Stability over 2000 h. ACS Applied Materials & Interfaces, 2019, 11, 39998-40005.	8.0	86
13	Hydrothermally processed CuCrO ₂ nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. Journal of Materials Chemistry A, 2018, 6, 20327-20337.	10.3	85
14	Low ost and Highly Efficient Carbonâ€Based Perovskite Solar Cells Exhibiting Excellent Longâ€Term Operational and UV Stability. Small, 2019, 15, e1904746.	10.0	83
15	Highly efficient, stable and hysteresis‒less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer. Nano Energy, 2020, 75, 105038.	16.0	77
16	Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells. Nano Energy, 2020, 76, 105127.	16.0	76
17	Efficient and Stable Perovskite Solar Cells Enabled by Dicarboxylic Acid-Supported Perovskite Crystallization. Journal of Physical Chemistry Letters, 2021, 12, 997-1004.	4.6	69
18	Dopant Engineering for Spiroâ€OMeTAD Holeâ€Transporting Materials towards Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102124.	14.9	67

Seçkin Akä±n

#	Article	IF	CITATIONS
19	High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers. Journal Physics D: Applied Physics, 2012, 45, 425101.	2.8	60
20	Organic Ammonium Halide Modulators as Effective Strategy for Enhanced Perovskite Photovoltaic Performance. Advanced Science, 2021, 8, 2004593.	11.2	57
21	Inorganic CuFeO ₂ Delafossite Nanoparticles as Effective Hole Transport Materials for Highly Efficient and Long-Term Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45142-45149.	8.0	53
22	Modification of photoelectrode with thiol-functionalized Calix[4]arenes as interface energy barrier for high efficiency in dye-sensitized solar cells. Journal of Power Sources, 2016, 307, 796-805.	7.8	52
23	Copolymerâ€Templated Nickel Oxide for Highâ€Efficiency Mesoscopic Perovskite Solar Cells in Inverted Architecture. Advanced Functional Materials, 2021, 31, 2102237.	14.9	51
24	Siteâ€selective Synthesis of βâ€[70]PCBMâ€like Fullerenes: Efficient Application in Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 3224-3228.	3.3	37
25	High-performance perovskite solar cells using the graphene quantum dot–modified SnO2/ZnO photoelectrode. Materials Today Energy, 2021, 22, 100853.	4.7	37
26	Minimizing the Trade-Off between Photocurrent and Photovoltage in Triple-Cation Mixed-Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 10188-10195.	4.6	36
27	An Effective Approach for Highâ€Efficiency Photoelectrochemical Solar Cells by Using Bifunctional DNA Molecules Modified Photoanode. Advanced Functional Materials, 2016, 26, 8776-8783.	14.9	35
28	Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics. Nano Energy, 2019, 61, 126-131.	16.0	35
29	Improvement of physical properties of CdO thin films by Au–Ag nanocluster codoping. Journal of Alloys and Compounds, 2013, 579, 272-278.	5.5	33
30	Boosting the efficiency and stability of perovskite solar cells through facile molecular engineering approaches. Solar Energy, 2020, 199, 136-142.	6.1	33
31	Enhancing the electron transfer and band potential tuning with long-term stability of ZnO based dye-sensitized solar cells by gallium and tellurium as dual-doping. Electrochimica Acta, 2017, 225, 243-254.	5.2	32
32	Highly efficient tandem photoelectrochemical solar cells using coumarin6 dye-sensitized CuCrO2 delafossite oxide as photocathode. Solar Energy, 2018, 169, 196-205.	6.1	30
33	Interface modification to achieve high-efficiency and stable perovskite solar cells. Chemical Engineering Journal, 2022, 433, 134613.	12.7	30
34	Polyaniline micro-rods based heterojunction solar cell: Structural and photovoltaic properties. Applied Physics Letters, 2012, 101, 253301.	3.3	29
35	Is machine learning redefining the perovskite solar cells?. Journal of Energy Chemistry, 2022, 66, 74-90.	12.9	27
36	Cyclopentadithiophene-Based Hole-Transporting Material for Highly Stable Perovskite Solar Cells with Stabilized Efficiencies Approaching 21% ACS Applied Energy Materials 2020 3 7456-7463	5.1	26

Seçkin Akä±n

#	Article	IF	CITATIONS
37	High performance GaAs metal-insulator–semiconductor devices using TiO2 as insulator layer. Current Applied Physics, 2012, 12, 1372-1377.	2.4	24
38	Effect of bromine doping on the charge transfer, ion migration and stability of the single crystalline MAPb(Br _{<i>x</i>} I _{1â~<i>x</i>}) ₃ photodetector. Journal of Materials Chemistry C, 2021, 9, 15189-15200.	5.5	23
39	Current transport mechanism of antimony-doped TiO2 nanoparticles based on MOS device. Sensors and Actuators A: Physical, 2013, 199, 18-23.	4.1	20
40	Stabilization of Highly Efficient and Stable Phaseâ€Pure FAPbI ₃ Perovskite Solar Cells by Molecularly Tailored 2Dâ€Overlayers. Angewandte Chemie, 2020, 132, 15818-15824.	2.0	17
41	Quinary Nanocrystalâ€Based Passivation Strategy for High Efficiency and Stable Perovskite Photovoltaics. Solar Rrl, 2022, 6, 2100737.	5.8	17
42	Atomic Layer Engineering of Aluminumâ€Doped Zinc Oxide Films for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	16
43	Insight into Interface Engineering at TiO2/Dye through Molecularly Functionalized Caf1 Biopolymer. ACS Sustainable Chemistry and Engineering, 2018, 6, 1825-1836.	6.7	14
44	Metal Oxide Nanoparticles as Electron Transport Layer for Highly Efficient Dye-Sensitized Solar Cells. , 2018, , 39-79.		12
45	Improvement in electrical performance of half-metallic Fe ₃ O ₄ /GaAs structures using pyrolyzed polymer film as buffer layer. Philosophical Magazine, 2014, 94, 2678-2691.	1.6	9
46	Realizing Highâ€Efficiency Perovskite Solar Cells by Passivating Tripleâ€Cation Perovskite Films. Solar Rrl, 2022, 6, .	5.8	9
47	Investigation on the Facet-Dependent Anisotropy in Halide Perovskite Single Crystals. Journal of Physical Chemistry C, 2022, 126, 8906-8912.	3.1	7
48	Recent Progress of Light Intensityâ€Modulated Small Perturbation Techniques in Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	6
49	Efficient and Lessâ€Toxic Indiumâ€Doped MAPbI ₃ Perovskite Solar Cells Prepared by Metal Alloying Technique. Solar Rrl, 2022, 6, .	5.8	6
50	Impact of Copper-Doped Titanium Dioxide Interfacial Layers on the Interface-State and Electrical Properties of Si-based MOS Devices. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4150-4159.	2.2	5
51	The Role of Pioneering Hole Transporting Materials in New Generation Perovskite Solar Cells. European Journal of Inorganic Chemistry, 2021, 2021, 4251-4264.	2.0	5
52	Future perspectives of perovskite solar cells: Metal oxide-based inorganic hole-transporting materials. , 2021, , 181-219.		5
53	SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu. International Journal of Innovative Engineering Applications, 2022, 6, 170-182.	0.4	1
54	Yüksek Verimli ve Uzun Dönem Kararlı Perovskit Güneş Hücrelerinin Üretimi için Perovskit/Spiro-OMeTAD Arayüzeyinin Thiol Molekülleri ile Modifikasyonu. European Journal of Science and Technology, 0, , 727-735.	0.5	0

#	Article	IF	CITATIONS
55	Bilyalı Öğütücü ile Üretilen Ekonomik Fe@Ni Alaşımların Boya Duyarlı Güneş Hücreleri Potansiyelinin Araştırılması. El-Cezeri Journal of Science and Engineering, 0, , .	nde KarÅ` 0.1	ŸÄ _t t Elektro