Christopher H George

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2323564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 2018, 175, 987-993.	2.7	1,122
2	ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 2020, 177, 3611-3616.	2.7	580
3	Coals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 2018, 175, 407-411.	2.7	519
4	Ryanodine Receptor Mutations Associated With Stress-Induced Ventricular Tachycardia Mediate Increased Calcium Release in Stimulated Cardiomyocytes. Circulation Research, 2003, 93, 531-540.	2.0	226
5	A practical guide for transparent reporting of research on natural products in the <i>British Journal of Pharmacology</i> : Reproducibility of natural product research. British Journal of Pharmacology, 2020, 177, 2169-2178.	2.7	177
6	Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 2022, 179, 3907-3913.	2.7	167
7	Ryanodine receptors and ventricular arrhythmias: Emerging trends in mutations, mechanisms and therapies. Journal of Molecular and Cellular Cardiology, 2007, 42, 34-50.	0.9	149
8	Intracellular Trafficking Pathways in the Assembly of Connexins into Gap Junctions. Journal of Biological Chemistry, 1999, 274, 8678-8685.	1.6	106
9	The Mechanism of Flecainide Action in CPVT Does Not Involve a Direct Effect on RyR2. Circulation Research, 2015, 116, 1324-1335.	2.0	87
10	Soluble TLR2 Reduces Inflammation without Compromising Bacterial Clearance by Disrupting TLR2 Triggering. Journal of Immunology, 2009, 183, 506-517.	0.4	83
11	Arrhythmogenic Mutation-Linked Defects in Ryanodine Receptor Autoregulation Reveal a Novel Mechanism of Ca 2+ Release Channel Dysfunction. Circulation Research, 2006, 98, 88-97.	2.0	80
12	Synthesis and assembly of connexins in vitro into homomeric and heteromeric functional gap junction hemichannels. Biochemical Journal, 1999, 339, 247-253.	1.7	71
13	Sarcoplasmic reticulum Ca2+ leak in heart failure: mere observation or functional relevance?. Cardiovascular Research, 2007, 77, 302-314.	1.8	66
14	Ryanodine Receptor Regulation by Intramolecular Interaction between Cytoplasmic and Transmembrane Domains. Molecular Biology of the Cell, 2004, 15, 2627-2638.	0.9	63
15	Assembly of Chimeric Connexin-Aequorin Proteins into Functional Gap Junction Channels. Journal of Biological Chemistry, 1998, 273, 1719-1726.	1.6	62
16	Analysis of Gap Junction Assembly Using Mutated Connexins Detected in Charcot-Marie-Tooth X-Linked Disease. Journal of Neurochemistry, 2001, 74, 711-720.	2.1	59
17	Functional heterogeneity of ryanodine receptor mutations associated with sudden cardiac death. Cardiovascular Research, 2004, 64, 52-60.	1.8	58
18	Alternative Splicing of Ryanodine Receptors Modulates Cardiomyocyte Ca 2+ Signaling and Susceptibility to Apoptosis. Circulation Research, 2007, 100, 874-883.	2.0	58

#	Article	IF	CITATIONS
19	Connexin-Aequorin Chimerae Report Cytoplasmic Calcium Environments along Trafficking Pathways Leading to Gap Junction Biogenesis in Living COS-7 Cells. Journal of Biological Chemistry, 1998, 273, 29822-29829.	1.6	57
20	Sex: A change in our guidelines to authors to ensure that this is no longer an ignored experimental variable. British Journal of Pharmacology, 2019, 176, 4081-4086.	2.7	56
21	Differential Ca2+ sensitivity of RyR2 mutations reveals distinct mechanisms of channel dysfunction in sudden cardiac death. Biochemical and Biophysical Research Communications, 2005, 331, 231-238.	1.0	43
22	Updating the guidelines for data transparency in the British Journal of Pharmacology – data sharing and the use of scatter plots instead of bar charts. British Journal of Pharmacology, 2017, 174, 2801-2804.	2.7	41
23	In situ modulation of the human cardiac ryanodine receptor (hRyR2) by FKBP12.6. Biochemical Journal, 2003, 370, 579-589.	1.7	39
24	Divergent effect of mammalian PLCζ in generating Ca2+ oscillations in somatic cells compared with eggs. Biochemical Journal, 2011, 438, 545-553.	1.7	28
25	Dysregulated Ryanodine Receptors Mediate Cellular Toxicity. Journal of Biological Chemistry, 2003, 278, 28856-28864.	1.6	27
26	Toward a Molecular Understanding of the Structure–Function of Ryanodine Receptor Ca ²⁺ Release Channels: Perspectives From Recombinant Expression Systems. Cell Biochemistry and Biophysics, 2005, 42, 197-222.	0.9	23
27	Massive Accumulation of Myofibroblasts inÂthe Critical Isthmus Is Associated WithÂVentricular Tachycardia Inducibility inÂPost-Infarct Swine Heart. JACC: Clinical Electrophysiology, 2017, 3, 703-714.	1.3	23
28	Ryanodine receptors are part of the myospryn complex in cardiac muscle. Scientific Reports, 2017, 7, 6312.	1.6	21
29	Connect and Conquer: Collectivized Behavior of Mitochondria and Bacteria. Frontiers in Physiology, 2019, 10, 340.	1.3	21
30	Synthesis and assembly of connexins in vitro into homomeric and heteromeric functional gap junction hemichannels. Biochemical Journal, 1999, 339, 247.	1.7	20
31	Targeted bioluminescent indicators in living cells. Methods in Enzymology, 2000, 305, 479-IN1.	0.4	20
32	Refocussing therapeutic strategies for cardiac arrhythmias: defining viable molecular targets to restore cardiac ion flux. Expert Opinion on Therapeutic Patents, 2008, 18, 1-19.	2.4	16
33	Pleiotropic mechanisms of action of perhexiline in heart failure. Expert Opinion on Therapeutic Patents, 2016, 26, 1049-1059.	2.4	16
34	Ero1α-Dependent ERp44 Dissociation From RyR2 Contributes to Cardiac Arrhythmia. Circulation Research, 2022, 130, 711-724.	2.0	16
35	A network-oriented perspective on cardiac calcium signaling. American Journal of Physiology - Cell Physiology, 2012, 303, C897-C910.	2.1	15
36	Developing New Anti-Arrhythmics: Clues from the Molecular Basis of Cardiac Ryanodine Receptor (RyR2) Ca2+-Release Channel Dysfunction. Current Pharmaceutical Design, 2007, 13, 3195-3211.	0.9	13

#	Article	IF	CITATIONS
37	A New System for Profiling Drug-Induced Calcium Signal Perturbation in Human Embryonic Stem Cell–Derived Cardiomyocytes. Journal of Biomolecular Screening, 2015, 20, 330-340.	2.6	13
38	Effect of flecainide derivatives on sarcoplasmic reticulum calcium release suggests a lack of direct action on the cardiac ryanodine receptor. British Journal of Pharmacology, 2016, 173, 2446-2459.	2.7	13
39	Techniques and Methodologies to Study the Ryanodine Receptor at the Molecular, Subcellular and Cellular Level. Advances in Experimental Medicine and Biology, 2012, 740, 183-215.	0.8	10
40	Introduction to biological complexity as a missing link in drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 753-763.	2.5	10
41	Moving in the right direction: elucidating the mechanisms of interaction between flecainide and the cardiac ryanodine receptor. British Journal of Pharmacology, 2022, 179, 2558-2563.	2.7	10
42	Synergy Between Intercellular Communication and Intracellular Ca2+ Handling in Arrhythmogenesis. Annals of Biomedical Engineering, 2015, 43, 1614-1625.	1.3	9
43	Association of cardiac myosin binding protein-C with the ryanodine receptor channel: putative retrograde regulation?. Journal of Cell Science, 2018, 131, .	1.2	9
44	Diamide insecticide resistance in transgenic <i>Drosophila</i> and Sf9 ells expressing a fullâ€length diamondback moth ryanodine receptor carrying an <scp>l4790M</scp> mutation. Pest Management Science, 2022, 78, 869-880.	1.7	9
45	Ryanodine receptor dysfunction in arrhythmia and sudden cardiac death. Future Cardiology, 2005, 1, 531-541.	0.5	8
46	Searching for new cardiovascular drugs: towards improved systems for drug screening?. Expert Opinion on Drug Discovery, 2011, 6, 1155-1170.	2.5	7
47	The ryanodine receptor: advances in structure and organization. Current Opinion in Physiology, 2018, 1, 1-6.	0.9	6
48	Cupid, a cell permeable peptide derived from amoeba, capable of delivering GFP into a diverse range of species. Scientific Reports, 2020, 10, 13725.	1.6	6
49	How does CaMKIIδ phosphorylation of the cardiac ryanodine receptor contribute to inotropy?. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E123; author reply E124.	3.3	5
50	A Systemized Approach to Investigate Ca2+ Synchronization in Clusters of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2015, 3, 89.	1.8	5
51	Chimeric Investigations into the Diamide Binding Site on the Lepidopteran Ryanodine Receptor. International Journal of Molecular Sciences, 2021, 22, 13033.	1.8	5
52	Questioning flecainide's mechanism of action in the treatment of catecholaminergic polymorphic ventricular tachycardia. Journal of Physiology, 2016, 594, 6431-6432.	1.3	4
53	Genetic polymorphisms in β1 and β2 adrenergic receptors: Variations without a theme?. Heart Rhythm, 2008, 5, 822-825.	0.3	2
54	The BJP expects authors to share data. British Journal of Pharmacology, 2019, 176, 4595-4598.	2.7	2

Christopher H George

#	Article	IF	CITATIONS
55	Editorial policy regarding the citation of preprints in the <i>British Journal of Pharmacology</i> (<i>BJP</i>). British Journal of Pharmacology, 2021, 178, 3605-3610.	2.7	2
56	Investigating the Ca2+-Cycling Basis of Rhythmicity and Synchronicity inÂCoupled Cardiomyocyte Monolayers. Biophysical Journal, 2009, 96, 273a-274a.	0.2	1
57	Adaptive Retuning of Small Ca2+ Fluxes in Cardiomyocyte Syncytia Predicts the Response To Pro-Arrhythmic Stimuli. Biophysical Journal, 2010, 98, 105a.	0.2	1
58	Decoding Ca2+ Signals as a Non-electrophysiological Method for Assessing Drug Toxicity in Stem Cell-Derived Cardiomyocytes. Methods in Pharmacology and Toxicology, 2017, , 173-190.	0.1	1
59	How good are our models of cardiovascular disease?. British Journal of Pharmacology, 2022, 179, 745-747.	2.7	1