
Jay P Mclaughlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2323482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of Human Immunodeficiency Virus Transactivator of Transcription (HIV-Tat1-86) Protein Alters Nociceptive Processing that is Sensitive to Anti-Oxidant and Anti-Inflammatory Interventions. Journal of NeuroImmune Pharmacology, 2022, 17, 152-164.	4.1	8
2	Examination of the Novel Sigma-1 Receptor Antagonist, SI 1/28, for Antinociceptive and Anti-allodynic Efficacy against Multiple Types of Nociception with Fewer Liabilities of Use. International Journal of Molecular Sciences, 2022, 23, 615.	4.1	3
3	Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Communications Biology, 2022, 5, 236.	4.4	18
4	An analog of [d-Trp]CJ-15,208 exhibits kappa opioid receptor antagonism following oral administration and prevents stress-induced reinstatement of extinguished morphine conditioned place preference. Pharmacology Biochemistry and Behavior, 2022, 217, 173405.	2.9	1
5	Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain. Molecules, 2022, 27, 3617.	3.8	12
6	HIV-1 Tat and cocaine impact astrocytic energy reservoirs and epigenetic regulation by influencing the LINC01133-hsa-miR-4726-5p-NDUFA9 axis. Molecular Therapy - Nucleic Acids, 2022, 29, 243-258.	5.1	4
7	HIV-1 Tat and cocaine impact mitochondrial epigenetics: effects on DNA methylation. Epigenetics, 2021, 16, 980-999.	2.7	19
8	HIV-Tat and Cocaine Impact Brain Energy Metabolism: Redox Modification and Mitochondrial Biogenesis Influence NRF Transcription-Mediated Neurodegeneration. Molecular Neurobiology, 2021, 58, 490-504.	4.0	24
9	Kratom Alkaloids, Natural and Semi-Synthetic, Show Less Physical Dependence and Ameliorate Opioid Withdrawal. Cellular and Molecular Neurobiology, 2021, 41, 1131-1143.	3.3	36
10	Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. ELife, 2021, 10, .	6.0	40
11	Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
12	In vivo proton magnetic resonance spectroscopy detection of metabolite abnormalities in aged Tat-transgenic mouse brain. GeroScience, 2021, 43, 1851-1862.	4.6	9
13	Development of New Benzylpiperazine Derivatives as σ ₁ Receptor Ligands with <i>in Vivo</i> Antinociceptive and Anti-Allodynic Effects. ACS Chemical Neuroscience, 2021, 12, 2003-2012.	3.5	7
14	Mini review: Promotion of substance abuse in HIV patients: Biological mediation by HIV-1 Tat protein. Neuroscience Letters, 2021, 753, 135877.	2.1	7
15	Kratom Alkaloids as Probes for Opioid Receptor Function: Pharmacological Characterization of Minor Indole and Oxindole Alkaloids from Kratom. ACS Chemical Neuroscience, 2021, 12, 2661-2678.	3.5	20
16	Binge ethanol consumption-associated behavioral impairments in male mice using a gelatin-based drinking-in-the dark model. Alcohol, 2021, 95, 25-36.	1.7	2
17	A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. Journal of Medicinal Chemistry, 2021, 64, 13873-13892.	6.4	33
18	Proteomics Profiling with SWATH-MS Quantitative Analysis of Changes in the Human Brain with HIV Infection Reveals a Differential Impact on the Frontal and Temporal Lobes. Brain Sciences, 2021, 11, 1438.	2.3	1

#	Article	IF	CITATIONS
19	Peptide Kappa Opioid Receptor Ligands and Their Potential for Drug Development. Handbook of Experimental Pharmacology, 2021, 271, 197-220.	1.8	5
20	Oxidative Metabolism as a Modulator of Kratom's Biological Actions. Journal of Medicinal Chemistry, 2021, 64, 16553-16572.	6.4	26
21	Preventing Morphine-Seeking Behavior through the Re-Engineering of Vincamine's Biological Activity. Journal of Medicinal Chemistry, 2020, 63, 5119-5138.	6.4	30
22	Phenylalanine Stereoisomers of CJ-15,208 and [d-Trp]CJ-15,208 Exhibit Distinctly Different Opioid Activity Profiles. Molecules, 2020, 25, 3999.	3.8	10
23	Lyophilized Kratom Tea as a Therapeutic Option for Opioid Dependence. Drug and Alcohol Dependence, 2020, 216, 108310.	3.2	40
24	Chronic Voluntary Binge Ethanol Consumption Causes Sexâ€Specific Differences in Microglial Signaling Pathways and Withdrawalâ€associated Behaviors in Mice. Alcoholism: Clinical and Experimental Research, 2020, 44, 1791-1806.	2.4	22
25	Discovery of a Highly Selective Sigma-2 Receptor Ligand, 1-(4-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with Drug-Like Properties and Antinociceptive Effects In Vivo. AAPS Journal, 2020, 22, 94.	4.4	33
26	[³ H]Dopamine Uptake through the Dopamine and Norepinephrine Transporters is Decreased in the Prefrontal Cortex of Transgenic Mice Expressing HIV-1 Transactivator of Transcription Protein. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 241-251.	2.5	16
27	Multifunctional opioid receptor agonism and antagonism by a novel macrocyclic tetrapeptide prevents reinstatement of morphineâ€seeking behaviour. British Journal of Pharmacology, 2020, 177, 4209-4222.	5.4	21
28	Region-specific effects of HIV-1 Tat on intrinsic electrophysiological properties of pyramidal neurons in mouse prefrontal cortex and hippocampus. Journal of Neurophysiology, 2020, 123, 1332-1341.	1.8	21
29	Design, Synthesis, and Characterization of the Macrocyclic Tetrapeptide <i>cyclo</i> [Pro-Sar-Phe- <scp>d</scp> -Phe]: A Mixed Opioid Receptor Agonist–Antagonist Following Oral Administration. ACS Chemical Neuroscience, 2020, 11, 1324-1336.	3.5	12
30	Characterization of Sigma 1 Receptor Antagonist CM-304 and Its Analog, AZ-66: Novel Therapeutics Against Allodynia and Induced Pain. Frontiers in Pharmacology, 2019, 10, 678.	3.5	31
31	Antinociceptive activity of thiazole-containing cyclized DAMGO and Leu-(Met) enkephalin analogs. Organic and Biomolecular Chemistry, 2019, 17, 5305-5315.	2.8	10
32	<scp>HIV</scp> â€I <scp>T</scp> at regulation of dopamine transmission and microglial reactivity is brain region specific. Glia, 2018, 66, 1915-1928.	4.9	13
33	A stable isotope dilution tandem mass spectrometry method of major kavalactones and its applications. PLoS ONE, 2018, 13, e0197940.	2.5	15
34	Selective κ receptor partial agonist HS666 produces potent antinociception without inducing aversion after i.c.v. administration in mice. British Journal of Pharmacology, 2017, 174, 2444-2456.	5.4	59
35	Conditional Human Immunodeficiency Virus Transactivator of Transcription Protein Expression Induces Depression-like Effects andÂOxidative Stress. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 599-609.	1.5	16
36	A one-pot multicomponent approach to a new series of morphine derivatives and their biological evaluation. Organic and Biomolecular Chemistry, 2017, 15, 7796-7801.	2.8	2

#	Article	IF	CITATIONS
37	Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. Journal of Medicinal Chemistry, 2016, 59, 8381-8397.	6.4	229
38	Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Human Molecular Genetics, 2016, 25, ddw130.	2.9	9
39	The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders. Frontiers in Microbiology, 2015, 6, 1164.	3.5	51
40	Didehydro-Cortistatin A Inhibits HIV-1 Tat Mediated Neuroinflammation and Prevents Potentiation of Cocaine Reward in Tat Transgenic Mice. Current HIV Research, 2015, 13, 64-79.	0.5	59
41	Parallel Synthesis of Hexahydrodiimidazodiazepines Heterocyclic Peptidomimetics and Their in Vitro and in Vivo Activities at μ (MOR), δ (DOR), and κ (KOR) Opioid Receptors. Journal of Medicinal Chemistry, 2015, 58, 4905-4917.	6.4	27
42	Synthesis and biological evaluations of novel endomorphin analogues containing α-hydroxy-β-phenylalanine (AHPBA) displaying mixed μ/δ opioid receptor agonist and δ opioid receptor antagonist activities. European Journal of Medicinal Chemistry, 2015, 92, 270-281.	5.5	16
43	Exposure to HIV-1 Tat in brain impairs sensorimotor gating and activates microglia in limbic and extralimbic brain regions of male mice. Behavioural Brain Research, 2015, 291, 209-218.	2.2	50
44	Synthesis and Characterization of a Dual Kappa-Delta Opioid Receptor Agonist Analgesic Blocking Cocaine Reward Behavior. ACS Chemical Neuroscience, 2015, 6, 1813-1824.	3.5	42
45	HIV-1 Tat Protein Exposure Potentiates Ethanol Reward and Reinstates Extinguished Ethanol-Conditioned Place Preference. Current HIV Research, 2015, 12, 415-423.	0.5	15
46	Estrous Cycle and HIV-1 Tat Protein Influence Cocaine-Conditioned Place Preference and Induced Locomotion of Female Mice. Current HIV Research, 2015, 12, 388-396.	0.5	16
47	Conditional Tat Protein Brain Expression in the GT-tg Bigenic Mouse Induces Cerebral Fractional Anisotropy Abnormalities. Current HIV Research, 2015, 13, 3-9.	0.5	10
48	Effects of Conditional Central Expression of HIV-1 Tat Protein to Potentiate Cocaine-Mediated Psychostimulation and Reward Among Male Mice. Neuropsychopharmacology, 2014, 39, 380-388.	5.4	61
49	Anxiety-like behavior of mice produced by conditional central expression of the HIV-1 regulatory protein, Tat. Psychopharmacology, 2014, 231, 2349-2360.	3.1	62
50	Nonpeptide Small Molecule Agonist and Antagonist Original Leads for Neuropeptide FF1 and FF2 Receptors. Journal of Medicinal Chemistry, 2014, 57, 8903-8927.	6.4	21
51	Progesterone protects normative anxiety-like responding among ovariectomized female mice that conditionally express the HIV-1 regulatory protein, Tat, in the CNS. Hormones and Behavior, 2014, 65, 445-453.	2.1	42
52	Conditional Tat protein expression in the GT-tg bigenic mouse brain induces gray matter density reductions. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 43, 49-54.	4.8	45
53	Central administration of angiotensin IV rapidly enhances novel object recognition among mice. Neuropharmacology, 2013, 70, 247-253.	4.1	23
54	The Macrocyclic Peptide Natural Product CJ-15,208 Is Orally Active and Prevents Reinstatement of Extinguished Cocaine-Seeking Behavior. Journal of Natural Products, 2013, 76, 433-438.	3.0	31

#	Article	IF	CITATIONS
55	Discovery of Novel Antinociceptive α-Conotoxin Analogues from the Direct In Vivo Screening of a Synthetic Mixture-Based Combinatorial Library. ACS Combinatorial Science, 2013, 15, 153-161.	3.8	14
56	Inhibition of Gβγ-subunit signaling potentiates morphine-induced antinociception but not respiratory depression, constipation, locomotion, and reward. Behavioural Pharmacology, 2013, 24, 144-152.	1.7	22
57	Physical Presence of Nor-Binaltorphimine in Mouse Brain over 21 Days after a Single Administration Corresponds to Its Long-Lasting Antagonistic Effect on <i>κ</i> -Opioid Receptors. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 545-554.	2.5	43
58	The macrocyclic tetrapeptide [<scp>D</scp> â€ <scp>T</scp> rp] <scp>CJ</scp> â€15,208 produces shortâ€acting opioid receptor antagonism in the <scp>CNS</scp> after oral administration. British Journal of Pharmacology, 2013, 169, 426-436.	g Î⁰ 5.4	37
59	Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse. Behavioural Brain Research, 2012, 229, 48-56.	2.2	121
60	Peptides derived from the prohormone proNPQ/spexin are potent central modulators of cardiovascular and renal function and nociception. FASEB Journal, 2012, 26, 947-954.	0.5	74
61	Opioid peptides: potential for drug development. Drug Discovery Today: Technologies, 2012, 9, e23-e31.	4.0	56
62	Novel opioid cyclic tetrapeptides: Trp isomers of CJâ€15,208 exhibit distinct opioid receptor agonism and shortâ€acting lº opioid receptor antagonism. British Journal of Pharmacology, 2012, 165, 1097-1108.	5.4	45
63	Targeting dynorphin/kappa opioid receptor systems to treat alcohol abuse and dependence. Alcohol, 2012, 46, 359-370.	1.7	94
64	Unexpected Opioid Activity Profiles of Analogues of the Novel Peptide Kappa Opioid Receptor Ligand CJâ€I 5,208. ChemMedChem, 2011, 6, 1739-1745.	3.2	32
65	Identification of Two Novel, Potent, Low-Liability Antinociceptive Compounds from the Direct In Vivo Screening of a Large Mixture-Based Combinatorial Library. AAPS Journal, 2010, 12, 318-329.	4.4	56
66	Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration. Psychopharmacology, 2010, 210, 199-209.	3.1	115
67	Synthesis of CJ-15,208, a novel κ-opioid receptor antagonist. Tetrahedron Letters, 2010, 51, 5020-5023.	1.4	25
68	Zyklophin, a systemically active selective kappa opioid receptor peptide antagonist with short duration of action. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18396-18401.	7.1	80
69	Endogenous \hat{I}^{ϱ} Opioid Activation Mediates Stress-Induced Deficits in Learning and Memory. Journal of Neuroscience, 2009, 29, 4293-4300.	3.6	87
70	Peptide Kappa Opioid Receptor Ligands: Potential for Drug Development. AAPS Journal, 2009, 11, 312-322.	4.4	114
71	Synthesis of Cyclic Tetrapeptide CJ 15,208: A Novel Kappa Opioid Receptor Antagonist. Advances in Experimental Medicine and Biology, 2009, 611, 269-270.	1.6	11
72	Northeast Under/graduate Research Organization for Neuroscience (NEURON): Our Thirteenth Conference for Neuroscience Trainees and Educators. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2009, 7, A65-8.	0.0	2

#	Article	IF	CITATIONS
73	Prior Activation of Kappa Opioid Receptors by U50,488 Mimics Repeated Forced Swim Stress to Potentiate Cocaine Place Preference Conditioning. Neuropsychopharmacology, 2006, 31, 787-794.	5.4	200
74	Social Defeat Stress-Induced Behavioral Responses are Mediated by the Endogenous Kappa Opioid System. Neuropsychopharmacology, 2006, 31, 1241-1248.	5.4	222
75	Prolonged Kappa Opioid Receptor Phosphorylation Mediated by C-protein Receptor Kinase Underlies Sustained Analgesic Tolerance. Journal of Biological Chemistry, 2004, 279, 1810-1818.	3.4	98
76	Neuropathic Pain Activates the Endogenous Opioid System in Mouse Spinal Cord and Induces Opioid Receptor Tolerance. Journal of Neuroscience, 2004, 24, 4576-4584.	3.6	143
77	Phosphorylation of a Carboxyl-terminal Serine within the κ-Opioid Receptor Produces Desensitization and Internalization. Journal of Biological Chemistry, 2003, 278, 34631-34640.	3.4	84
78	κ Opioid Receptor Antagonism and Prodynorphin Gene Disruption Block Stress-Induced Behavioral Responses. Journal of Neuroscience, 2003, 23, 5674-5683.	3.6	449
79	8-Carboxamidocyclazocine: A Long-Acting, Novel Benzomorphan. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 374-380.	2.5	28
80	Tyrosine Phosphorylation of the μ-Opioid Receptor Regulates Agonist Intrinsic Efficacy. Molecular Pharmacology, 2001, 59, 1360-1368.	2.3	27
81	Regulation of Opioid Receptor Function by Chronic Agonist Exposure: Constitutive Activity and Desensitization. Molecular Pharmacology, 2001, 60, 20-25.	2.3	66
82	Tyrosine Phosphorylation of the κ-Opioid Receptor Regulates Agonist Efficacy. Journal of Biological Chemistry, 2000, 275, 38281-38285.	3.4	18