Joonwon Lim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2323127/joonwon-lim-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38
papers

2,745
citations

22
h-index

46
g-index

46
ext. papers

23,103
ext. citations

13.5
avg, IF

L-index

#	Paper	IF	Citations
38	Restacked nanohybrid graphene layers with expanded interlayer distance enabled by inorganic spacer for highly efficient, flexible Na-ion battery anodes. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 886, 115137	4.1	2
37	Discovery of Single-Atom Catalyst: Customized Heteroelement Dopants on Graphene. <i>Accounts of Materials Research</i> , 2021 , 2, 394-406	7.5	3
36	Multidimensional TiCT MXene Architectures Interfacial Electrochemical Self-Assembly. <i>ACS Nano</i> , 2021 , 15, 10058-10066	16.7	18
35	CNT-rGO Hydrogel-Integrated Fabric Composite Synthesized via an Interfacial Gelation Process for Wearable Supercapacitor Electrodes. <i>ACS Omega</i> , 2021 , 6, 19578-19585	3.9	3
34	Highly uniform, straightforward, controllable fabrication of copper nano-objects via artificial nucleation-assisted electrodeposition. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 897, 115594	4.1	1
33	N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. <i>Energy Storage Materials</i> , 2020 , 32, 517-524	19.4	30
32	Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 38006-38015	9.5	9
31	Nitrogen-Dopant-Induced OrganicIhorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2019 , 29, 1902489	15.6	11
30	Cobalt Based Nanoparticles Embedded Reduced Graphene Oxide Aerogel for Hydrogen Evolution Electrocatalyst. <i>Particle and Particle Systems Characterization</i> , 2019 , 36, 1900090	3.1	8
29	Open porous graphene nanoribbon hydrogel via additive-free interfacial self-assembly: Fast mass transport electrodes for high-performance biosensing and energy storage. <i>Energy Storage Materials</i> , 2019 , 16, 251-258	19.4	17
28	Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. <i>Chemical Society Reviews</i> , 2018 , 47, 6013-6045	58.5	88
27	Ultrastable Graphene-Encapsulated 3 nm Nanoparticles by In Situ Chemical Vapor Deposition. <i>Advanced Materials</i> , 2018 , 30, e1805023	24	17
26	Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents. <i>Carbon</i> , 2017 , 119, 555-568	10.4	58
25	Cobalt-Based Active Species Molecularly Immobilized on Carbon Nanotubes for the Oxygen Reduction Reaction. <i>ChemSusChem</i> , 2017 , 10, 3473-3481	8.3	16
24	Flash Light Millisecond Self-Assembly of High IBlock Copolymers for Wafer-Scale Sub-10 nm Nanopatterning. <i>Advanced Materials</i> , 2017 , 29, 1700595	24	66
23	Nitrogen Dopants in Carbon Nanomaterials: Defects or a New Opportunity?. <i>Small Methods</i> , 2017 , 1, 1600014	12.8	114
22	Spontaneous linker-free binding of polyoxometalates on nitrogen-doped carbon nanotubes for efficient water oxidation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1941-1947	13	39

(2014-2017)

21	Supramolecular Nanotubules as a Catalytic Regulator for Palladium Cations: Applications in Selective Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11511-11514	16.4	36
20	Supramolecular Nanotubules as a Catalytic Regulator for Palladium Cations: Applications in Selective Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 11669-11672	3.6	5
19	Interface-Confined High Crystalline Growth of Semiconducting Polymers at Graphene Fibers for High-Performance Wearable Supercapacitors. <i>ACS Nano</i> , 2017 , 11, 9424-9434	16.7	75
18	Omnidirectional Deformable Energy Textile for Human Joint Movement Compatible Energy Storage. <i>ACS Applied Materials & Distributed Storage.</i> 2017, 9, 41363-41370	9.5	11
17	Carbon nanotube-grafted inverse opal nanostructures. Optical Materials Express, 2017, 7, 2242	2.6	2
16	Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nature Communications, 2016 , 7, 12911	17.4	109
15	3D Tailored Crumpling of Block-Copolymer Lithography on Chemically Modified Graphene. <i>Advanced Materials</i> , 2016 , 28, 1591-6	24	46
14	Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. <i>Nature Communications</i> , 2016 , 7, 10364	17.4	94
13	Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 1571-7	9.5	62
12	Large-Area Buckled MoS2 Films on the Graphene Substrate. <i>ACS Applied Materials & Description</i> (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate. <i>ACS Applied Materials & Description</i> (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate. <i>ACS Applied Materials & Description</i> (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate. <i>ACS Applied Materials & Description</i> (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate. <i>ACS Applied Materials & Description</i> (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate. <i>ACS Applied Materials & Description</i> (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate. <i>ACS Applied Materials & Description</i> (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate. <i>ACS Applied Materials & Description</i> (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate. <i>ACS Applied Materials & Description</i> (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (1997) Large-Area Buckled MoS2 Films on the Graphene Substrate (9.5	30
11	High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes. <i>ACS Applied Materials & Composite Aerogel</i> Electrodes. <i>ACS Applied Materials & Composite Aerogel</i> Electrodes. <i>ACS Applied Materials & Composite Aerogel</i> Electrodes.	9.5	44
10	Self-Size-Limiting Nanoscale Perforation of Graphene for Dense Heteroatom Doping. <i>ACS Applied Materials & Materia</i>	9.5	22
9	Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride. <i>ACS Nano</i> , 2015 , 9, 9148-57	16.7	73
8	Synergistic concurrent enhancement of charge generation, dissociation, and transport in organic solar cells with plasmonic metal-carbon nanotube hybrids. <i>Advanced Materials</i> , 2015 , 27, 1519-25	24	77
7	Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. <i>Advanced Materials</i> , 2014 , 26, 615-9, 505	24	349
6	N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 621-626	35.4	127
5	Electroless Bimetal Decoration on N-Doped Carbon Nanotubes and Graphene for Oxygen Reduction Reaction Catalysts. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 965-970	3.1	19
4	Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis. <i>ACS Nano</i> , 2014 , 8, 9073-80	16.7	99

3	Altrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. <i>Chemical Communications</i> , 2014 , 50, 6818-30	5.8	361
2	Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. <i>Nano Letters</i> , 2014 , 14, 1228-33	11.5	554
1	Direct growth of polyaniline chains from N-doped sites of carbon nanotubes. <i>Small</i> , 2013 , 9, 3829-33	11	42