
Rosalind A Segal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of Neuronal Survival by the Serine-Threonine Protein Kinase Akt. Science, 1997, 275, 661-665.	6.0	2,322
2	Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9448-9453.	3.3	1,537
3	p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature, 2002, 420, 74-78.	13.7	748
4	A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13513-13518.	3.3	590
5	Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nature Neuroscience, 2001, 4, 981-988.	7.1	402
6	SELECTIVITY INNEUROTROPHINSIGNALING: Theme and Variations. Annual Review of Neuroscience, 2003, 26, 299-330.	5.0	397
7	Abnormal Cerebellar Development and Foliation in BDNFâ^'/â^' Mice Reveals a Role for Neurotrophins in CNS Patterning. Neuron, 1997, 19, 269-281.	3.8	394
8	Studies on intercellular LETS glycoprotein matrices. Cell, 1978, 14, 377-391.	13.5	322
9	Blockade of Endogenous Ligands of TrkB Inhibits Formation of Ocular Dominance Columns. Neuron, 1997, 19, 63-76.	3.8	313
10	Cell Surface Trk Receptors Mediate NGF-Induced Survival While Internalized Receptors Regulate NGF-Induced Differentiation. Journal of Neuroscience, 2000, 20, 5671-5678.	1.7	305
11	Retrograde neurotrophin signaling: Trk-ing along the axon. Current Opinion in Neurobiology, 2002, 12, 268-274.	2.0	280
12	Rapid Nuclear Responses to Target-Derived Neurotrophins Require Retrograde Transport of Ligand–Receptor Complex. Journal of Neuroscience, 1999, 19, 7889-7900.	1.7	261
13	Hedgehog Signal Transduction: Key Players, Oncogenic Drivers, and Cancer Therapy. Developmental Cell, 2016, 38, 333-344.	3.1	256
14	Changes in neurotrophin responsiveness during the development of cerebellar granule neurons. Neuron, 1992, 9, 1041-1052.	3.8	233
15	BDNF stimulates migration of cerebellar granule cells. Development (Cambridge), 2002, 129, 1435-1442.	1.2	233
16	Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nature Neuroscience, 2004, 7, 596-604.	7.1	193
17	Brain-Derived Neurotrophic Factor Modulates Cerebellar Plasticity and Synaptic Ultrastructure. Journal of Neuroscience, 2002, 22, 1316-1327.	1.7	192
18	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	13.5	182

#	Article	IF	CITATIONS
19	Anterograde Transport of TrkB in Axons Is Mediated by Direct Interaction with Slp1 and Rab27. Developmental Cell, 2009, 16, 675-686.	3.1	176
20	Neuronal Signaling through Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a020669-a020669.	2.3	170
21	A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy. Frontiers in Neuroscience, 2017, 11, 481.	1.4	164
22	Trk Receptors Function As Rapid Retrograde Signal Carriers in the Adult Nervous System. Journal of Neuroscience, 1997, 17, 7007-7016.	1.7	161
23	Polarized Signaling Endosomes Coordinate BDNF-Induced Chemotaxis of Cerebellar Precursors. Neuron, 2007, 55, 53-68.	3.8	152
24	Differential Utilization of Trk Autophosphorylation Sites. Journal of Biological Chemistry, 1996, 271, 20175-20181.	1.6	142
25	Cerebellar proteoglycans regulate sonic hedgehog responses during development. Development (Cambridge), 2002, 129, 2223-2232.	1.2	140
26	Action in the axon: generation and transport of signaling endosomes. Current Opinion in Neurobiology, 2008, 18, 270-275.	2.0	138
27	Location, location, location: a spatial view of neurotrophin signal transduction. Trends in Neurosciences, 2002, 25, 160-165.	4.2	135
28	RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway–Dependent Tumors. Cancer Research, 2015, 75, 3623-3635.	0.4	133
29	The RNA-binding protein SFPQ orchestrates an RNA regulon to promote axon viability. Nature Neuroscience, 2016, 19, 690-696.	7.1	118
30	Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Experimental Neurology, 2020, 324, 113121.	2.0	118
31	BDNF stimulates migration of cerebellar granule cells. Development (Cambridge), 2002, 129, 1435-42.	1.2	102
32	A neuron-specific cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes. Journal of Cell Biology, 2008, 181, 1027-1039.	2.3	97
33	High-resolution imaging demonstrates dynein-based vesicular transport of activated trk receptors. Journal of Neurobiology, 2002, 51, 302-312.	3.7	93
34	Medulloblastoma tumorigenesis diverges from cerebellar granule cell differentiation in patched heterozygous mice. Developmental Biology, 2003, 263, 50-66.	0.9	89
35	Paclitaxel Reduces Axonal Bclw to Initiate IP3R1-Dependent Axon Degeneration. Neuron, 2017, 96, 373-386.e6.	3.8	83
36	Target-Derived Neurotrophins Coordinate Transcription and Transport of Bclw to Prevent Axonal Degeneration. Journal of Neuroscience, 2013, 33, 5195-5207.	1.7	75

#	Article	IF	CITATIONS
37	Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses. Nature Neuroscience, 2009, 12, 409-417.	7.1	72
38	A Retrograde Neuronal Survival Response: Target-Derived Neurotrophins Regulate MEF2D and bcl-w. Journal of Neuroscience, 2009, 29, 6700-6709.	1.7	68
39	Cerebellar proteoglycans regulate sonic hedgehog responses during development. Development (Cambridge), 2002, 129, 2223-32.	1.2	66
40	Heparan Sulfate Proteoglycans Containing a Glypican 5 Core and 2-O-Sulfo-iduronic Acid Function as Sonic Hedgehog Co-receptors to Promote Proliferation. Journal of Biological Chemistry, 2013, 288, 26275-26288.	1.6	64
41	A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro-Oncology, 2017, 19, now261.	0.6	55
42	Migration from a Mitogenic Niche Promotes Cell-Cycle Exit. Journal of Neuroscience, 2005, 25, 10437-10445.	1.7	50
43	Regional expression of p75NTR contributes to neurotrophin regulation of cerebellar patterning. Molecular and Cellular Neurosciences, 2003, 22, 1-13.	1.0	49
44	A Transposon Screen Identifies Loss of Primary Cilia as a Mechanism of Resistance to SMO Inhibitors. Cancer Discovery, 2017, 7, 1436-1449.	7.7	49
45	Sensory Neuropathy Attributable to Loss of Bcl-w. Journal of Neuroscience, 2011, 31, 1624-1634.	1.7	46
46	Pediatric low-grade gliomas: How modern biology reshapes the clinical field. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 294-307.	3.3	45
47	Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells. Nature Communications, 2019, 10, 3731.	5.8	45
48	Sustained Signaling by Phospholipase C-γ Mediates Nerve Growth Factor-Triggered Gene Expression. Molecular and Cellular Biology, 2001, 21, 2695-2705.	1.1	44
49	Sarm1 activation produces cADPR to increase intra-axonal Ca++ and promote axon degeneration in PIPN. Journal of Cell Biology, 2022, 221, .	2.3	44
50	Diversity of developing peripheral glia revealed by single-cell RNA sequencing. Developmental Cell, 2021, 56, 2516-2535.e8.	3.1	40
51	Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. Journal of Cell Biology, 2021, 220, .	2.3	40
52	Numb Links Extracellular Cues to Intracellular Polarity Machinery to Promote Chemotaxis. Developmental Cell, 2011, 20, 610-622.	3.1	39
53	Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons. Cell Reports, 2015, 13, 812-828.	2.9	39
54	Expression profiles of 151 pediatric low-grade gliomas reveal molecular differences associated with location and histological subtype. Neuro-Oncology, 2015, 17, 1486-1496.	0.6	39

#	Article	IF	CITATIONS
55	The Eya1 Phosphatase Promotes Shh Signaling during Hindbrain Development and Oncogenesis. Developmental Cell, 2015, 33, 22-35.	3.1	35
56	Preserve and protect: maintaining axons within functional circuits. Trends in Neurosciences, 2014, 37, 572-582.	4.2	33
57	Tyrosine receptor kinase B is a drug target in astrocytomas. Neuro-Oncology, 2017, 19, 22-30.	0.6	32
58	Neurotrophins in cerebellar granule cell development and medulloblastoma. Journal of Neuro-Oncology, 1997, 35, 347-352.	1.4	26
59	Neuromuscular Junction Defects in Mice with Mutation of dynein heavy chain 1. PLoS ONE, 2011, 6, e16753.	1.1	25
60	A large-scale drug screen identifies selective inhibitors of class I HDACs as a potential therapeutic option for SHH medulloblastoma. Neuro-Oncology, 2019, 21, 1150-1163.	0.6	24
61	There and back again: coordinated transcription, translation and transport in axonal survival and regeneration. Current Opinion in Neurobiology, 2016, 39, 62-68.	2.0	21
62	A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies. Journal of Visualized Experiments, 2015, , e53304.	0.2	18
63	The Eya1 Phosphatase Mediates Shh-Driven Symmetric Cell Division of Cerebellar Granule Cell Precursors. Developmental Neuroscience, 2020, 42, 170-186.	1.0	10
64	Sonic Hedgehog Signaling is Blue: Insights from the Patched Mutant Mice. Trends in Neurosciences, 2018, 41, 870-872.	4.2	7
65	Recognizing Team Science Contributions in Academic Hiring, Promotion, and Tenure. Journal of Neuroscience, 2020, 40, 6662-6663.	1.7	7
66	Shhâ€proteoglycan interactions regulate maturation of olfactory glomerular circuitry. Developmental Neurobiology, 2014, 74, 1255-1267.	1.5	6
67	Campenot Cultures and Microfluidics Provide Complementary Platforms for Spatial Study of Dorsal Root Ganglia Neurons. Neuromethods, 2015, , 105-124.	0.2	6
68	How neuronal activity regulates glioma cell proliferation. Neuro-Oncology, 2015, 17, 1543-1544.	0.6	4
69	A Polyamine Twist on Hedgehog Signaling. Developmental Cell, 2015, 35, 1-2.	3.1	3
70	Synthetic extracellular matrices and astrocytes provide a supportive microenvironment for the cultivation and investigation of primary pediatric gliomas. Neuro-Oncology Advances, 2022, 4, .	0.4	3
71	Understanding the epigenetic landscape and cellular architecture of childhood brain tumors. Neurochemistry International, 2021, 144, 104940.	1.9	2
72	Uncomfortably numb: how Nav1.7 mediates paclitaxel-induced peripheral neuropathy. Brain, 2021, 144, 1621-1623.	3.7	2

#	Article	IF	CITATIONS
73	An Architect of the Hindbrain: DDX3X Regulates Normal and Malignant Development. Developmental Cell, 2020, 54, 425-426.	3.1	0
74	EPCT-17. DEVELOPING EYA PHOSPHATASE INHIBITORS WITH ON-TARGET EFFECTS IN SHH-MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i50-i50.	0.6	0
75	Retrograde Response Genes and Neuronal Survival. FASEB Journal, 2011, 25, 205.1.	0.2	0
76	EXTH-71. FUNCTIONAL GENOMICS IDENTIFIES EPIGENETIC REGULATORS AS NOVEL THERAPEUTIC TARGETS FOR SONIC HEDGEHOG MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, vi179-vi179.	0.6	0
77	MEDB-45. Functional genomics identifies epigenetic regulators as novel therapeutic targets for sonic hedgehog medulloblastoma. Neuro-Oncology, 2022, 24, i116-i116.	0.6	0