
## Aziz Boukenter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322819/publications.pdf Version: 2024-02-01



A717 ROLIVENTED

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges. IEEE<br>Transactions on Nuclear Science, 2013, 60, 2015-2036.                     | 1.2 | 366       |
| 2  | Overview of radiation induced point defects in silica-based optical fibers. Reviews in Physics, 2019, 4, 100032.                                                           | 4.4 | 208       |
| 3  | Recent advances in radiation-hardened fiber-based technologies for space applications. Journal of<br>Optics (United Kingdom), 2018, 20, 093001.                            | 1.0 | 153       |
| 4  | Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Optics Express, 2012, 20, 29751.                  | 1.7 | 129       |
| 5  | Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application.<br>Optics Express, 2012, 20, 8457.                                     | 1.7 | 99        |
| 6  | Radiation Effects on Silica-Based Preforms and Optical Fibers—I: Experimental Study With Canonical<br>Samples. IEEE Transactions on Nuclear Science, 2008, 55, 3473-3482.  | 1.2 | 85        |
| 7  | Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers. IEEE<br>Transactions on Nuclear Science, 2013, 60, 4305-4313.               | 1.2 | 71        |
| 8  | Proton- and Gamma-Induced Effects on Erbium-Doped Optical Fibers. IEEE Transactions on Nuclear<br>Science, 2007, 54, 2426-2434.                                            | 1.2 | 68        |
| 9  | Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain. Journal of Non-Crystalline Solids, 2011, 357, 1871-1874.    | 1.5 | 66        |
| 10 | Radiation Effects on Ytterbium- and Ytterbium/Erbium-Doped Double-Clad Optical Fibers. IEEE<br>Transactions on Nuclear Science, 2009, 56, 3293-3299.                       | 1.2 | 60        |
| 11 | Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions.<br>Optics Letters, 2014, 39, 2541.                                     | 1.7 | 60        |
| 12 | Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels. Optics<br>Letters, 2014, 39, 5313.                                             | 1.7 | 54        |
| 13 | High Î <sup>3</sup> -ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors. Optics Express, 2012, 20, 26978.                  | 1.7 | 53        |
| 14 | Influence of Drawing Conditions on the Properties and Radiation Sensitivities of Pure-Silica-Core<br>Optical Fibers. Journal of Lightwave Technology, 2012, 30, 1726-1732. | 2.7 | 46        |
| 15 | Development of a Temperature Distributed Monitoring System Based On Raman Scattering in Harsh<br>Environment. IEEE Transactions on Nuclear Science, 2014, 61, 3315-3322.   | 1.2 | 38        |
| 16 | Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters. IEEE<br>Transactions on Nuclear Science, 2012, 59, 2894-2901.                       | 1.2 | 36        |
| 17 | Vulnerability analysis of optical fibers for laser megajoule facility: preliminary studies. IEEE<br>Transactions on Nuclear Science, 2005, 52, 1497-1503.                  | 1.2 | 33        |
| 18 | Vulnerability of OFDR-based distributed sensors to high γ-ray doses. Optics Express, 2015, 23, 18997.                                                                      | 1.7 | 33        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the<br>French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes.<br>Sensors, 2017, 17, 1377. | 2.1 | 33        |
| 20 | Radiation Effects on Silica-Based Preforms and Optical Fibers-II: Coupling <i>Ab initio</i> Simulations and Experiments. IEEE Transactions on Nuclear Science, 2008, 55, 3508-3514.                                               | 1.2 | 32        |
| 21 | Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study. Optical Materials<br>Express, 2015, 5, 1054.                                                                                          | 1.6 | 29        |
| 22 | Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments. IEEE Transactions on Nuclear Science, 2017, 64, 68-73.                                                                                               | 1.2 | 27        |
| 23 | Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers. Applied Physics Letters, 2004, 84, 4215-4217.                                                               | 1.5 | 26        |
| 24 | Cerium-activated sol–gel silica glasses for radiation dosimetry in harsh environment. Materials<br>Research Express, 2016, 3, 046201.                                                                                             | 0.8 | 26        |
| 25 | Coupled Theoretical and Experimental Studies for the Radiation Hardening of Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2014, 61, 1819-1825.                                                               | 1.2 | 23        |
| 26 | Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry. Optical<br>Materials, 2016, 51, 104-109.                                                                                              | 1.7 | 22        |
| 27 | Integration of Optical Fibers in Megajoule Class Laser Environments: Advantages and Limitations. IEEE<br>Transactions on Nuclear Science, 2012, 59, 1317-1322.                                                                    | 1.2 | 21        |
| 28 | Potential of Copper- and Cerium-Doped Optical Fiber Materials for Proton Beam Monitoring. IEEE<br>Transactions on Nuclear Science, 2017, 64, 567-573.                                                                             | 1.2 | 20        |
| 29 | Radioluminescence and Optically Stimulated Luminescence Responses of a Cerium-Doped Sol-Gel Silica<br>Glass Under X-Ray Beam Irradiation. IEEE Transactions on Nuclear Science, 2018, 65, 1591-1597.                              | 1.2 | 20        |
| 30 | Growth and Decay Kinetics of Radiation-Induced Attenuation in Bulk Optical Materials. IEEE<br>Transactions on Nuclear Science, 2018, 65, 1612-1618.                                                                               | 1.2 | 20        |
| 31 | Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2. Journal of Non-Crystalline Solids, 2009, 355, 1089-1091.                                                             | 1.5 | 19        |
| 32 | Origin of the visible absorption in radiation-resistant optical fibers. Optical Materials Express, 2013, 3, 1769.                                                                                                                 | 1.6 | 19        |
| 33 | Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings. Optics Express, 2015, 23, 8659.                                                                                                      | 1.7 | 18        |
| 34 | Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed<br>x-ray irradiation. Journal of Applied Physics, 2020, 128, .                                                              | 1.1 | 17        |
| 35 | Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and<br>Infrared Wavelengths. Sensors, 2020, 20, 7254.                                                                          | 2.1 | 17        |
| 36 | Combined Temperature and Radiation Effects on Radiation-Sensitive Single-Mode Optical Fibers. IEEE<br>Transactions on Nuclear Science, 2020, 67, 1643-1649.                                                                       | 1.2 | 16        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors. IEEE Transactions on Nuclear Science, 2016, 63, 1688-1693.                                                                                                                                                                                                 | 1.2 | 15        |
| 38 | Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter. Materials Research Express, 2014, 1, 026203.                                                                                                                                                                 | 0.8 | 14        |
| 39 | Steady-State Radiation-Induced Effects on the Performances of BOTDA and BOTDR Optical Fiber Sensors. IEEE Transactions on Nuclear Science, 2018, 65, 111-118.                                                                                                                                                                                                    | 1.2 | 14        |
| 40 | Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorousâ€Doped<br>Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800553.                                                                                                                                                            | 0.8 | 13        |
| 41 | X-Ray, Proton, and Electron Radiation Effects on Type I Fiber Bragg Gratings. IEEE Transactions on<br>Nuclear Science, 2018, 65, 1632-1638.                                                                                                                                                                                                                      | 1.2 | 12        |
| 42 | Temperature-Dependent Modeling of Cladding-Pumped <inline-formula> <tex-math notation="LaTeX"><br/>\$ext{Er}^{3+}\$</tex-math> </inline-formula> / <inline-formula> <tex-math<br>notation="LaTeX"&gt;\$ext{Yb}^{3+}\$ </tex-math<br></inline-formula> -Codoped Fiber Amplifiers for Space<br>Applications. Journal of Lightwave Technology, 2018, 36, 3594-3602. | 2.7 | 12        |
| 43 | Operating Temperature Range of Phosphorous-Doped Optical Fiber Dosimeters Exploiting Infrared Radiation-Induced Attenuation. IEEE Transactions on Nuclear Science, 2021, 68, 906-912.                                                                                                                                                                            | 1.2 | 12        |
| 44 | Radiation Effects on Aluminosilicate Optical Fibers: Spectral Investigations From the Ultraviolet to<br>Nearâ€Infrared Domains. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800485.                                                                                                                                                | 0.8 | 11        |
| 45 | Spectroscopic Study of \$gamma\$-Ray and Pulsed X-Ray Radiation-Induced Point Defects in Pure-Silica-Core Optical Fibers. IEEE Transactions on Nuclear Science, 2007, 54, 1136-1142.                                                                                                                                                                             | 1.2 | 10        |
| 46 | Radiation Effects on Pure-Silica Multimode Optical Fibers in the Visible and Near-Infrared Domains:<br>Influence of OH Groups. Applied Sciences (Switzerland), 2021, 11, 2991.                                                                                                                                                                                   | 1.3 | 10        |
| 47 | Investigation of the Incorporation of Cerium Ions in MCVD-Silica Glass Preforms for Remote Optical Fiber Radiation Dosimetry. Sensors, 2021, 21, 3362.                                                                                                                                                                                                           | 2.1 | 10        |
| 48 | Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors, 2020, 20, 4510.                                                                                                                                                                                                                                                                     | 2.1 | 9         |
| 49 | Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 1650-1657.                                                                                                                                                                                                                         | 1.2 | 9         |
| 50 | Photobleaching Effect on Infrared Radiation-Induced Attenuation of Germanosilicate Optical Fibers at MGy Dose Levels. IEEE Transactions on Nuclear Science, 2021, 68, 1688-1693.                                                                                                                                                                                 | 1.2 | 9         |
| 51 | Temperature Dependence of Low-Dose Radiation-Induced Attenuation of Germanium-Doped Optical<br>Fiber at Infrared Wavelengths. IEEE Transactions on Nuclear Science, 2022, 69, 512-517.                                                                                                                                                                           | 1.2 | 9         |
| 52 | 6-MeV Electron Exposure Effects on OFDR-Based Distributed Fiber-Based Sensors. IEEE Transactions on<br>Nuclear Science, 2018, 65, 1598-1603.                                                                                                                                                                                                                     | 1.2 | 8         |
| 53 | Radiation and High Temperature Effects on Regenerated Fiber Bragg Grating. Journal of Lightwave<br>Technology, 2019, 37, 4763-4769.                                                                                                                                                                                                                              | 2.7 | 8         |
| 54 | Cu/Ce-co-Doped Silica Class as Radioluminescent Material for Ionizing Radiation Dosimetry. Materials, 2020, 13, 2611.                                                                                                                                                                                                                                            | 1.3 | 8         |

| #  | Article                                                                                                                                                                                                                        | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Remote Measurements of X-Rays Dose Rate Using a Cerium-Doped Air-Clad Optical Fiber. IEEE<br>Transactions on Nuclear Science, 2020, 67, 1658-1662.                                                                             | 1.2 | 8         |
| 56 | Sol–Gel Waveguide-Based Sensor for Structural Health Monitoring on Large Surfaces in Aerospace<br>Domain. Aerospace, 2021, 8, 109.                                                                                             | 1.1 | 8         |
| 57 | Temperature Influence on the Radiation Responses of Erbiumâ€Doped Fiber Amplifiers. Physica Status<br>Solidi (A) Applications and Materials Science, 2021, 218, 2100002.                                                       | 0.8 | 8         |
| 58 | Combined Temperature and Radiation Effects on the Gain of Er- and Er–Yb-Doped Fiber Amplifiers. IEEE<br>Transactions on Nuclear Science, 2021, 68, 793-800.                                                                    | 1.2 | 8         |
| 59 | Pulsed Xâ€Ray Radiation Responses of Solarizationâ€Resistant Optical Fibers. Physica Status Solidi (A)<br>Applications and Materials Science, 2019, 216, 1800487.                                                              | 0.8 | 7         |
| 60 | Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H <sub>2</sub> Loading. IEEE Transactions on Nuclear Science, 2020, 67, 289-295.                                                 | 1.2 | 7         |
| 61 | Optical responses of a copper-activated sol-gel silica glass under low-dose and low-dose rate X-ray exposures. OSA Continuum, 2019, 2, 563.                                                                                    | 1.8 | 7         |
| 62 | Photobleaching Effect on the Radiationâ€Induced Attenuation of an Ultralow Loss Optical Fiber at<br>Telecommunication Wavelengths. Physica Status Solidi (A) Applications and Materials Science, 2022,<br>219, 2100518.        | 0.8 | 6         |
| 63 | Optical Fiber-Based Monitoring of X-ray Pulse Series from a Linear Accelerator. Radiation, 2022, 2, 17-32.                                                                                                                     | 0.6 | 6         |
| 64 | Theoretical Investigation of Thermal Effects in High Power Er 3+ /Yb 3+ ―Codoped Doubleâ€Clad Fiber<br>Amplifiers for Space Applications. Physica Status Solidi (A) Applications and Materials Science, 2019,<br>216, 1800582. | 0.8 | 5         |
| 65 | Radiation-Response of Fiber Bragg Gratings at Low Temperatures. IEEE Transactions on Nuclear Science, 2020, 67, 1637-1642.                                                                                                     | 1.2 | 5         |
| 66 | Temperature Effect on the Radioluminescence of Cu-, Ce-, and CuCe-Doped Silica-Based Fiber Materials.<br>IEEE Transactions on Nuclear Science, 2021, 68, 1782-1787.                                                            | 1.2 | 5         |
| 67 | Combined Experimental and Simulation Study of the Fiber Composition Effects on Its Brillouin<br>Scattering Signature. Journal of Lightwave Technology, 2019, 37, 4619-4624.                                                    | 2.7 | 4         |
| 68 | Regeneration of Fiber Bragg Gratings and Their Responses Under X-Rays. IEEE Transactions on Nuclear<br>Science, 2021, 68, 1681-1687.                                                                                           | 1.2 | 4         |
| 69 | Temperature Dependence of Radiation Induced Attenuation of Aluminosilicate Optical Fiber. IEEE<br>Transactions on Nuclear Science, 2022, 69, 1515-1520.                                                                        | 1.2 | 4         |
| 70 | Comparison between the UV and X-ray Photosensitivities of Hybrid TiO2-SiO2 Thin Layers. Materials, 2020, 13, 3730.                                                                                                             | 1.3 | 3         |
| 71 | Impact of Î <sup>3</sup> -rays Irradiation on Hybrid TiO2-SiO2 Sol-Gel Films Doped with RHODAMINE 6G. Materials, 2021, 14, 5754.                                                                                               | 1.3 | 3         |
| 72 | Optical fibers under irradiation: quantitative assessment of the energy distribution of                                                                                                                                        |     | 3         |

radiation-induced trapped states. , 2020, , .

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Pulsed Xâ€Ray Radiation Response of Ultralow Loss Pureâ€6ilicaâ€Core Optical Fibers. Physica Status Solidi<br>(A) Applications and Materials Science, 2022, 219, 2100519.                           | 0.8 | 3         |
| 74 | X-Ray Radioluminescence in Diversely Doped Multimode Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2022, 69, 1625-1632.                                                        | 1.2 | 3         |
| 75 | Toward Confocal Chromatic Sensing in Nuclear Reactors: <i>In Situ</i> Optical Refractive Index<br>Measurements of Bulk Glass. IEEE Transactions on Nuclear Science, 2022, 69, 722-730.              | 1.2 | 3         |
| 76 | Brillouin scattering based sensor in high gamma dose environment: design and optimization of optical fiber for long-term distributed measurement. Proceedings of SPIE, 2012, , .                    | 0.8 | 2         |
| 77 | Distributed Temperature and Strain Fiber-Based Sensing in Radiation Environment. IEEE Transactions on Nuclear Science, 2021, 68, 1675-1680.                                                         | 1.2 | 2         |
| 78 | Combined Radiations and Temperature Effects on FBGs Photo-inscribed by Femtosecond Laser in Radiation-Hardened Optical Fibers. , 2018, , .                                                          |     | 2         |
| 79 | Integration of optical fibers in radiative environments: Advantages and limitations. , 2011, , .                                                                                                    |     | 1         |
| 80 | Investigation by Thermoluminescence of the Ionization and Annealing Processes in Irradiated Ge-Doped<br>Silica Fiber Preform. IEEE Transactions on Nuclear Science, 2021, 68, 1556-1564.            | 1.2 | 1         |
| 81 | Coupled radiation and temperature effects on Erbium-doped fiber amplifiers. , 2020, , .                                                                                                             |     | 1         |
| 82 | Multi-Mode Interferometry: Application to TiO2–SiO2 Sol-Gel Waveguide-Based Sensing in the<br>Aerospace Domain. Aerospace, 2021, 8, 401.                                                            | 1.1 | 1         |
| 83 | Photocycle of point defects in highly- and weakly-germanium doped silica revealed by transient absorption measurements with femtosecond tunable pump. Scientific Reports, 2022, 12, .               | 1.6 | 1         |
| 84 | Recent Advances in Radiation-Hardened Fiber-Optic Amplifiers for Space-based Laser Communications. , 2021, , .                                                                                      |     | 0         |
| 85 | Optimization of the Radiation Response of Backup Optical Fiber Amplifiers for Space Missions. IEEE<br>Transactions on Nuclear Science, 2022, 69, 1500-1505.                                         | 1.2 | 0         |
| 86 | <i>In Situ</i> Optical Characterization of Bulk Optical Glasses Under Protons and X-Rays. IEEE<br>Transactions on Nuclear Science, 2022, 69, 1492-1499.                                             | 1.2 | 0         |
| 87 | O2 Loaded Germanosilicate Optical Fibers: Experimental In Situ Investigation and Ab Initio Simulation<br>Study of GLPC Evolution under Irradiation. Applied Sciences (Switzerland), 2022, 12, 3916. | 1.3 | Ο         |