List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic hydrogenation of nitrate in water: improvement of the activity and selectivity to N ₂ by using Rh(III)-hexamolybdate supported on ZrO ₂ –Al ₂ O ₃ . Environmental Technology (United Kingdom), 2022, 43, 560-571.	2.2	3
2	Promoting effect of rhodium on Co/ZnAl2O4 catalysts for the catalytic combustion of hydrocarbons. Catalysis Today, 2021, 372, 2-10.	4.4	3
3	Characterization and catalytic activity of soft-templated NiO-CeO2 mixed oxides for CO and CO2 co-methanation. Frontiers of Chemical Science and Engineering, 2021, 15, 251-268.	4.4	21
4	Oscillatory Behaviour of Ni Supported on ZrO2 in the Catalytic Partial Oxidation of Methane as Determined by Activation Procedure. Materials, 2021, 14, 2495.	2.9	2
5	Catalytic behavior of the WOx-ZrO2 system in the clean selective oxidation of diphenyl sulfide (DPS). Catalysis Today, 2020, 372, 146-146.	4.4	8
6	MCM-41 Supported Co-Based Bimetallic Catalysts for Aqueous Phase Transformation of Glucose to Biochemicals. Processes, 2020, 8, 843.	2.8	9
7	Photoreforming of Glucose over CuO/TiO2. Catalysts, 2020, 10, 477.	3.5	24
8	Volcanic ash as reusable catalyst in the green synthesis of 3H-1,5-benzodiazepines. Green Processing and Synthesis, 2019, 8, 600-610.	3.4	11
9	Molybdenum-containing systems based on natural kaolinite as catalysts for selective oxidation of aromatic sulfides. Applied Catalysis B: Environmental, 2017, 219, 683-692.	20.2	22
10	Hydrothermal Stability of Ru/SiO2–C: A Promising Catalyst for Biomass Processing through Liquid-Phase Reactions. Catalysts, 2017, 7, 6.	3.5	4
11	Total Oxidation of Naphthalene with Zirconia-Supported Cobalt, Copper and Nickel Catalysts. Catalysts, 2017, 7, 293.	3.5	10
12	Experimental and theoretical study about sulfur deactivation of Ni/ CeO2 and Rh/CeO2 catalysts. Materials Chemistry and Physics, 2016, 172, 69-76.	4.0	32
13	The reducibility of highly stable Ni-containing species in catalysts derived from hydrotalcite-type precursors. RSC Advances, 2015, 5, 82282-82291.	3.6	14
14	Gold nanoparticles supported on conventional silica as catalysts for the low-temperature CO oxidation. Journal of Molecular Catalysis A, 2015, 404-405, 83-91.	4.8	15
15	Pyroclasts of the First Phases of the Explosive-Effusive PCCVC Volcanic Eruption: Physicochemical Analysis. Advances in Materials Physics and Chemistry, 2015, 05, 302-315.	0.7	4
16	Preparation and Characterization of Nanocomposite Polymer Membranes Containing Functionalized SnO2 Additives. Membranes, 2014, 4, 123-142.	3.0	69
17	Characterization of Carbon Nanotube Dispersions in Solutions of Bile Salts and Derivatives Containing Aromatic Substituents. Journal of Physical Chemistry B, 2014, 118, 1012-1021.	2.6	35
18	High Temperature Stability of Onion-Like Carbon vs Highly Oriented Pyrolytic Graphite. PLoS ONE, 2014, 9. e105788.	2.5	7

#	Article	IF	CITATIONS
19	MoO _x -ZrO ₂ System: Preparation, Characterization and Catalytic Activity for Selective Oxidation of Diphenylsulfide. Current Catalysis, 2014, 3, 172-178.	0.5	3
20	A Scientific Approach in the Recovery of the Historic Center of Rome: Limits and Potentials of the "Color Plan― Procedia Chemistry, 2013, 8, 212-220.	0.7	3
21	Lysozyme binds onto functionalized carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 2013, 108, 16-22.	5.0	12
22	Catalysts based on Rh(III)-hexamolybdate/Î ³ -Al2O3 and their application in the selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Molecular Catalysis A, 2013, 366, 109-115.	4.8	21
23	Realgar and Light. Procedia Chemistry, 2013, 8, 185-193.	0.7	17
24	Spectroscopic and Microscopic Characterization of Volcanic Ash from Puyehue-(Chile) Eruption: Preliminary Approach for the Application in the Arsenic Removal. Journal of Spectroscopy, 2013, 2013, 1-8.	1.3	19
25	Advance in the study of limonene epoxidation with H2O2 catalyzed by Cu(II) complex heteropolytungstates. Catalysis Communications, 2012, 26, 117-121.	3.3	11
26	Enhanced Protective Properties and Structural Order of Self-Assembled Monolayers of Aromatic Thiols on Copper in Contact with Acidic Aqueous Solution. Journal of Physical Chemistry C, 2012, 116, 4628-4636.	3.1	29
27	Role of CeO2 in Rh/α-Al2O3 Catalysts for CO2 Reforming of Methane. Catalysis Letters, 2011, 141, 1643-1650.	2.6	29
28	Selective Photooxidation and Photoreduction Processes at Surface-Modified by Grafted Vanadyl. International Journal of Photoenergy, 2011, 2011, 1-10.	2.5	11
29	Characterization of α-Al2O3 supports modified with CeO2 and ZrO2. Materials Letters, 2009, 63, 477-479.	2.6	12
30	Bulk and surface structures of V2O5/ZrO2 catalysts for n-butane oxidative dehydrogenation. Journal of Molecular Catalysis A, 2009, 310, 17-23.	4.8	26
31	Stability improvements of Ni/α-Al2O3 catalysts to obtain hydrogen from methane reforming. International Journal of Hydrogen Energy, 2009, 34, 2260-2268.	7.1	74
32	Modifications induced by pretreatments on Au/SBA-15 and their influence on the catalytic activity for low temperature CO oxidation. Physical Chemistry Chemical Physics, 2009, 11, 593-602.	2.8	46
33	Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs. Catalysis Today, 2008, 133-135, 487-492.	4.4	94
34	Morphological and textural characterization of vanadium oxide supported on zirconia by ionic exchange. Applied Surface Science, 2008, 255, 2012-2019.	6.1	8
35	Preparation and characterization of Pd–Co/sulfated zirconia catalysts for no selective reduction by methane. Catalysis Communications, 2008, 9, 1096-1100.	3.3	4
36	Characterization of Co/sulfated zirconia catalysts for selective reduction of NO by methane. Catalysis Communications, 2008, 10, 74-78.	3.3	4

#	ARTICLE	IF	CITATIONS
37	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E1"> <mml:mrow><mml:mtext>Co</mml:mtext></mml:mrow> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E2"><mml:msub><mml:mtext>TiO</mml:mtext><<mml:mtext>2</mml:mtext></mml:msub>with</mml:math 	2.5 1	42
38	Visible Light Response. International Journal of Photoenergy, 2008, 2008, 1-9. Raman and X-ray investigations of the incorporation of Ca2+ and Cd2+ in the ZrO2 structure. Journal of Raman Spectroscopy, 2007, 38, 824-831.	2.5	106
39	Surface and structural properties of zirconia-supported vanadium oxide. Journal of Molecular Catalysis A, 2005, 227, 59-66.	4.8	5
40	WOx/ZrO2 catalysts. Applied Catalysis A: General, 2004, 269, 169-177.	4.3	75
41	Characterization of vanadium oxide on ZrO2-based catalyst precursors. Physical Chemistry Chemical Physics, 2003, 5, 4974.	2.8	7
42	WOx/ZrO2 catalysts. Applied Catalysis A: General, 2003, 240, 119-128.	4.3	28
43	Butane isomerization on several H-zeolite catalysts. Studies in Surface Science and Catalysis, 2002, , 715-722.	1.5	1
44	WOx/ZrO2 catalysts. Applied Catalysis A: General, 2002, 231, 173-184.	4.3	54
45	lsomerization of n-Butane over Ultrastable H-Y Zeolites with Different Si/Al Atomic Ratio. Catalysis Letters, 2002, 78, 119-123.	2.6	4
46	Redox Behavior of VI B Transition Metal Ions in Rutile TiO2 Solid Solutions: An XRD and EPR Study. Journal of Solid State Chemistry, 2000, 152, 412-420.	2.9	16
47	Title is missing!. Topics in Catalysis, 1999, 8, 171-178.	2.8	20
48	lonic Size and Metal Uptake of Chromium(VI), Molybdenum(VI), and Tungsten(VI) Species on ZrO2-Based Catalyst Precursors. Journal of Physical Chemistry B, 1999, 103, 11318-11326.	2.6	15
49	MoO3/ZrO2and CrO3/ZrO2Catalysts: Study of the Precursor Formation. Journal of Colloid and Interface Science, 1998, 202, 278-292.	9.4	8
50	Characterization of the Zirconia-Supported Tungsten Oxide System by Laser Raman and Diffuse Reflectance Spectroscopies. Journal of Physical Chemistry B, 1997, 101, 11129-11135.	2.6	60
51	XPS and EPR study of high and low surface area CoO–MgO solid solutions: surface composition and Co2+ion dispersion. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4567-4574.	1.7	41
52	Manganese oxide–zirconium oxide solid solutions. An X-ray diffraction, Raman spectroscopy, thermogravimetry and magnetic study. Journal of Materials Chemistry, 1996, 6, 403-408.	6.7	25
53	Formation of the MoVI Surface Phase on MoOx/ZrO2 Catalysts. The Journal of Physical Chemistry, 1995, 99, 5556-5567.	2.9	52
54	Nickel oxide–zirconium oxide: Ni2+incorporation and its influence on the phase transition and sintering of zirconia. Journal of Materials Chemistry, 1995, 5, 183-189.	6.7	9

#	Article	IF	CITATIONS
55	Effect of Na+ ions on some properties of hydrous and thermally decomposed zirconium oxide. Journal of Materials Chemistry, 1992, 2, 75.	6.7	8
56	The nature of surface chromium species on CrOx/ZrO2 catalysts. Journal of Molecular Catalysis, 1989, 55, 23-33.	1.2	42
57	Incorporation of manganese ions in magnesium titanate. Reactivity of Solids, 1987, 4, 125-137.	0.3	3
58	Formation and stability of RuIII incorporated in TiO2(rutile). Journal of the Chemical Society Faraday Transactions I, 1985, 81, 813.	1.0	5
59	X-ray, thermogravimetric and electron spin resonance study of the ReOx–TiO2 system. Journal of the Chemical Society Faraday Transactions I, 1981, 77, 1871.	1.0	7