List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	State-of-the-art heat transfer fluids for parabolic trough collector. International Journal of Heat and Mass Transfer, 2020, 152, 119541.	2.5	124
2	Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid. Case Studies in Thermal Engineering, 2015, 6, 77-92.	2.8	89
3	Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. International Journal of Heat and Mass Transfer, 2020, 146, 118887.	2.5	78
4	Investigation on the isotherm of silica gel+water systems. Journal of Thermal Analysis and Calorimetry, 2004, 76, 659-669.	2.0	67
5	2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines. Energies, 2013, 6, 1497-1526.	1.6	65
6	Response surface models for CFD predictions of air diffusion performance index in a displacement ventilated office. Energy and Buildings, 2008, 40, 774-781.	3.1	54
7	Specific heat capacity of a single component adsorbent-adsorbate system. Applied Physics Letters, 2007, 90, 171902.	1.5	48
8	The potential influence of building optimization and passive design strategies on natural ventilation systems in underground buildings: The state of the art. Tunnelling and Underground Space Technology, 2019, 92, 103065.	3.0	40
9	On the accuracy assessment of Laplacian models in MPS. Computer Physics Communications, 2014, 185, 2412-2426.	3.0	36
10	DNS of wavepacket evolution in a Blasius boundary layer. Journal of Fluid Mechanics, 2010, 652, 333-372.	1.4	34
11	Effect of corrugation profile on the thermal–hydraulic performance of corrugated channels using CuO–water nanofluid. Case Studies in Thermal Engineering, 2014, 4, 65-75.	2.8	34
12	Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort. Renewable Energy, 2018, 115, 183-198.	4.3	32
13	Laminar mixing performances of baffling, shaft eccentricity and unsteady mixing in a cylindrical vessel. Chemical Engineering Science, 2013, 104, 960-974.	1.9	29
14	Simulation Strategies for Mixed Traffic Conditions: A Review of Car-Following Models and Simulation Frameworks. Journal of Engineering (United States), 2020, 2020, 1-22.	0.5	29
15	The Electro-Adsorption Chiller: Performance Rating of a Novel Miniaturized Cooling Cycle for Electronics Cooling. Journal of Heat Transfer, 2006, 128, 889-896.	1.2	28
16	Performance modelling of an electro-adsorption chiller. Philosophical Magazine, 2006, 86, 3613-3632.	0.7	27
17	Higher-order bounded differencing schemes for compressible and incompressible flows. International Journal for Numerical Methods in Fluids, 2007, 53, 57-80.	0.9	27
18	Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation. Computer Physics Communications, 2015, 196, 317-334.	3.0	26

#	Article	IF	CITATIONS
19	The effects of wavy-wall phase shift on thermal-hydraulic performance of Al2O3–water nanofluid flow in sinusoidal-wavy channel. Case Studies in Thermal Engineering, 2014, 4, 153-165.	2.8	24
20	Numerical investigations on the turbulent forced convection of nanofluids flow in a triangular-corrugated channel. Case Studies in Thermal Engineering, 2015, 6, 212-225.	2.8	22
21	Fatty acid/metal ion composite as thermal energy storage materials. SN Applied Sciences, 2020, 2, 1.	1.5	22
22	Numerical heat and mass transfer analysis of a cross-flow indirect evaporative cooler with plates and flat tubes. Heat and Mass Transfer, 2016, 52, 1765-1777.	1.2	21
23	High-order particle method for solving incompressible Navier–Stokes equations within a mixed Lagrangian–Eulerian framework. Computer Methods in Applied Mechanics and Engineering, 2017, 325, 77-101.	3.4	21
24	Passive thermal performance prediction and multi-objective optimization of naturally-ventilated underground shelter in Malaysia. Renewable Energy, 2018, 123, 342-352.	4.3	20
25	Assessment of Smoothed Particle Hydrodynamics (SPH) models for predicting wall heat transfer rate at complex boundary. Engineering Analysis With Boundary Elements, 2020, 111, 195-205.	2.0	20
26	A coupled Smoothed Particle Hydrodynamics-Volume Compensated Particle Method (SPH-VCPM) for Fluid Structure Interaction (FSI) modelling. Ocean Engineering, 2020, 218, 107923.	1.9	19
27	Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics. International Journal of Mechanical Sciences, 2019, 151, 772-784.	3.6	18
28	Lagrangian Simulation of Steady and Unsteady Laminar Mixing by Plate Impeller in a Cylindrical Vessel. Industrial & Engineering Chemistry Research, 2013, 52, 10004-10014.	1.8	16
29	A collocated finite volume embedding method for simulation of flow past stationary and moving body. Computers and Fluids, 2009, 38, 347-357.	1.3	14
30	Numerical computation of fluid–solid mixture flow using the SPH–VCPM–DEM method. Journal of Fluids and Structures, 2021, 106, 103369.	1.5	14
31	Applications of high-resolution schemes based on normalized variable formulation for 3D indoor airflow simulations. International Journal for Numerical Methods in Engineering, 2008, 73, 948-981.	1.5	13
32	Unstructured Moving Particle Pressure Mesh (UMPPM) method for incompressible isothermal and non-isothermal flow computation. Computer Methods in Applied Mechanics and Engineering, 2016, 305, 703-738.	3.4	13
33	Effect of Pressure on the Adsorption Rate for Gasoline Vapor on Pitch-Based Activated Carbon. Journal of Chemical & Engineering Data, 2009, 54, 1504-1509.	1.0	11
34	An improved particle method for simulating Fluid-Structure Interactions: The multi-resolution SPH-VCPM approach. Ocean Engineering, 2022, 247, 110779.	1.9	11
35	An entropy generation and genetic algorithm optimization of two-bed adsorption cooling cycle. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2012, 226, 142-156.	1.4	10
36	Thin-Film Thermoelectric Cooler: Thermodynamic Modelling and its Temperature—entropy Flux Formulation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2007, 221, 33-46.	1.4	9

#	Article	IF	CITATIONS
37	Refined energy-conserving dissipative particle dynamics model with temperature-dependent properties and its application in solidification problem. Physical Review E, 2017, 96, 043302.	0.8	8
38	Multigrid solution of Euler equations using high-resolution NVD differencing scheme for unstructured meshes. Progress in Computational Fluid Dynamics, 2006, 6, 389.	0.1	7
39	On the effect of turbulent intensity towards the accuracy of the zero-equation turbulence model for indoor airflow application. Building and Environment, 2011, 46, 82-88.	3.0	7
40	Enhancing the thermal properties of organic phase change material (palmitic acid) by doping MXene nanoflakes. AIP Conference Proceedings, 2020, , .	0.3	7
41	Adsorption characteristics of parent and copper-sputtered RD silica gels. Philosophical Magazine, 2007, 87, 1113-1121.	0.7	6
42	A new higher-order RBF-FD scheme with optimal variable shape parameter for partial differential equation. Numerical Heat Transfer, Part B: Fundamentals, 2019, 75, 289-311.	0.6	6
43	Particle simulation and flow sequence on drainage of liquid particles. Computers and Mathematics With Applications, 2013, 66, 1437-1451.	1.4	5
44	How to Modify LAMMPS: From the Prospective of a Particle Method Researcher. ChemEngineering, 2021, 5, 30.	1.0	5
45	A two-stage cuboid-styled thermoelectric cooler with switched polarity. , 0, , .		4
46	Parametric Study of an Improved Gamma Differencing Scheme Based on Normalized-Variable Formulation for Low-Speed Flow With Artificial Compressibility Technique. Numerical Heat Transfer, Part B: Fundamentals, 2006, 50, 561-584.	0.6	4
47	Mixed traffic driver behavioral modeling at urban merge section: an experimental study. Transportation Letters, 2022, 14, 752-777.	1.8	4
48	An improved particle smoothing procedure for Laplacian operator in a randomly scattered cloud. Numerical Heat Transfer, Part B: Fundamentals, 2016, 70, 111-135.	0.6	3
49	Modeling Lane-Changing Behavior of Vehicles at Merge Section under Mixed Traffic Conditions. Journal of Transportation Engineering Part A: Systems, 2021, 147, .	0.8	3
50	Modelling road traffic congestion at urban merge section under mixed traffic conditions. Proceedings of the Institution of Civil Engineers: Transport, 2024, 177, 3-19.	0.3	3
51	Simulations of Two-dimensional High Speed Turbulent Compressible Flow in a Diffuser and a Nozzle Blade Cascade. American Journal of Applied Sciences, 2005, 2, 1325-1330.	0.1	3
52	Modelling integrated movements of motorcycles at urban merge sections under mixed traffic conditions. Transportmetrica B, 2022, 10, 441-467.	1.4	3
53	Numerical Simulation of 3D Transonic Flow in a Compressor Rotor. International Journal of Modelling and Simulation, 2007, 27, 74-79.	2.3	2
54	Development of a Lagrangian Meshless Flow Solver based on the Moving Particle Semi-implicit (MPS) Method. IOP Conference Series: Earth and Environmental Science, 2013, 16, 012151.	0.2	2

#	Article	IF	CITATIONS
55	A numerical study of laminar forced convection flow of Al2O3-water nanofluid in triangular-corrugated channel. IOP Conference Series: Earth and Environmental Science, 2013, 16, 012149.	0.2	2
56	A new high-order particle method for solving high Reynolds number incompressible flows. Computational Particle Mechanics, 2019, 6, 343-370.	1.5	2
57	A review on development and applications of element-free galerkin methods in computational fluid dynamics. International Journal for Computational Methods in Engineering Science and Mechanics, 2020, 21, 252-275.	1.4	2
58	A NUMERICALLY CONSISTENT MULTIPHASE POISEUILLE FLOW COMPUTATION BY A NEW PARTICLE METHOD. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.3	2
59	IMPROVEMENT OF WEAKLY COMPRESSIBLE SPH METHOD FOR TURBULENT FREE SURFACE FLOWS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2019, 75, I_583-I_588.	0.0	2
60	The study of pressure source term in moving particle semi-implicit (MPS). IOP Conference Series: Earth and Environmental Science, 2013, 16, 012152.	0.2	1
61	Simulation of Unsteady Incompressible Flow Using a New Particle Method. Applied Mechanics and Materials, 0, 819, 326-329.	0.2	1
62	Validation of finite element model of human lumbar vertebrae under mechanical forces. AIP Conference Proceedings, 2019, , .	0.3	1
63	A refined Moving Particle Pressure Mesh (MPPM) method for solving incompressible Navier-stokes equations. Computers and Fluids, 2021, 226, 104993.	1.3	0