
Bernard Laurent Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/232246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astrocyteâ€ŧargeting <scp>RNA</scp> interference against mutated superoxide dismutase 1 induces motoneuron plasticity and protects fastâ€fatigable motor units in a mouse model of amyotrophic lateral sclerosis. Glia, 2022, 70, 842-857.	2.5	10
2	Dopamine and Methamphetamine Differentially Affect Electron Transport Chain Complexes and Parkin in Rat Striatum: New Insight into Methamphetamine Neurotoxicity. International Journal of Molecular Sciences, 2022, 23, 363.	1.8	13
3	Central and peripheral delivered AAV9-SMN are both efficient but target different pathomechanisms in a mouse model of spinal muscular atrophy. Gene Therapy, 2022, 29, 544-554.	2.3	6
4	Single and Dual Vector Gene Therapy with AAV9-PHP.B Rescues Hearing in Tmc1 Mutant Mice. Molecular Therapy, 2021, 29, 973-988.	3.7	36
5	Mitofusin-2 in the Nucleus Accumbens Regulates Anxiety and Depression-like Behaviors Through Mitochondrial and Neuronal Actions. Biological Psychiatry, 2021, 89, 1033-1044.	0.7	55
6	SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 354-377.e3.	2.3	16
7	IL10- and IL35-Secreting MutuDC Lines Act in Cooperation to Inhibit Memory T Cell Activation Through LAG-3 Expression. Frontiers in Immunology, 2021, 12, 607315.	2.2	11
8	CSPα reduces aggregates and rescues striatal dopamine release in α-synuclein transgenic mice. Brain, 2021, 144, 1661-1669.	3.7	14
9	The Links between ALS and NF-Î $^{ m B}$. International Journal of Molecular Sciences, 2021, 22, 3875.	1.8	28
10	Central anorexigenic actions of bile acids are mediated by TGR5. Nature Metabolism, 2021, 3, 595-603.	5.1	64
11	Parkin regulates drug-taking behavior in rat model of methamphetamine use disorder. Translational Psychiatry, 2021, 11, 293.	2.4	3
12	The exercise-induced long noncoding RNA <i>CYTOR</i> promotes fast-twitch myogenesis in aging. Science Translational Medicine, 2021, 13, eabc7367.	5.8	19
13	Nano-imaging trace elements at organelle levels in substantia nigra overexpressing α-synuclein to model Parkinson's disease. Communications Biology, 2020, 3, 364.	2.0	9
14	Anti-Aβ antibodies bound to neuritic plaques enhance microglia activity and mitigate tau pathology. Acta Neuropathologica Communications, 2020, 8, 198.	2.4	7
15	Glutaredoxin 1 Downregulation in the Substantia Nigra Leads to Dopaminergic Degeneration in Mice. Movement Disorders, 2020, 35, 1843-1853.	2.2	8
16	Efficient viral transduction in mouse inner ear hair cells with utricle injection and AAV9-PHP.B. Hearing Research, 2020, 394, 107882.	0.9	55
17	Blood Flow to the Spleen is Altered in a Mouse Model of Spinal Muscular Atrophy. Journal of Neuromuscular Diseases, 2020, 7, 315-322.	1.1	8
18	Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nature Medicine, 2019, 25, 1123-1130.	15.2	149

#	Article	IF	CITATIONS
19	Glutaredoxin1 Diminishes Amyloid Beta-Mediated Oxidation of F-Actin and Reverses Cognitive Deficits in an Alzheimer's Disease Mouse Model. Antioxidants and Redox Signaling, 2019, 31, 1321-1338.	2.5	25
20	The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging. Molecular Cell, 2019, 73, 775-787.e10.	4.5	100
21	Scalable Production of AAV Vectors in Orbitally Shaken HEK293 Cells. Molecular Therapy - Methods and Clinical Development, 2019, 13, 14-26.	1.8	45
22	Altered interplay between endoplasmic reticulum and mitochondria in Charcot–Marie–Tooth type 2A neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2328-2337.	3.3	73
23	Evolution of the neurochemical profiles in the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1283-1298.	2.4	22
24	Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: a broken relationship?. Cell Death and Disease, 2018, 9, 333.	2.7	69
25	PFN2 and GAMT as common molecular determinants of axonal Charcot-Marie-Tooth disease. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 870-878.	0.9	16
26	G2019S LRRK2 enhances the neuronal transmission of tau in the mouse brain. Human Molecular Genetics, 2018, 27, 120-134.	1.4	37
27	Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. European Journal of Medical Genetics, 2018, 61, 685-698.	0.7	28
28	Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nature Neuroscience, 2018, 21, 576-588.	7.1	228
29	Scalable Production and Purification of Adeno-Associated Viral Vectors (AAV). Methods in Molecular Biology, 2018, 1850, 259-274.	0.4	3
30	PM20D1 is aÂquantitative trait locus associated with Alzheimer's disease. Nature Medicine, 2018, 24, 598-603.	15.2	73
31	Exogenous LRRK2G2019S induces parkinsonian-like pathology in a nonhuman primate. JCI Insight, 2018, 3,	2.3	24
32	Spinal cord stimulation improves forelimb use in an alpha-synuclein animal model of Parkinson's disease. International Journal of Neuroscience, 2017, 127, 28-36.	0.8	15
33	Parkin functionally interacts with PGC-1α to preserve mitochondria and protect dopaminergic neuron <i>s</i> . Human Molecular Genetics, 2017, 26, ddw418.	1.4	50
34	Motifs in the tau protein that control binding to microtubules and aggregation determine pathological effects. Scientific Reports, 2017, 7, 13556.	1.6	35
35	Alpha-synuclein ferrireductase activity is detectible in vivo, is altered in Parkinson's disease and increases the neurotoxicity of DOPAL. Molecular and Cellular Neurosciences, 2017, 85, 1-11.	1.0	18
36	In vivo neurochemical measurements in cerebral tissues using a droplet-based monitoring system. Nature Communications, 2017, 8, 1239.	5.8	26

Bernard Laurent Schneider

#	Article	IF	CITATIONS
37	An R-CaMP1.07 reporter mouse for cell-type-specific expression of a sensitive red fluorescent calcium indicator. PLoS ONE, 2017, 12, e0179460.	1.1	47
38	Modulating the catalytic activity of AMPK has neuroprotective effects against α-synuclein toxicity. Molecular Neurodegeneration, 2017, 12, 80.	4.4	33
39	α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP. PLoS ONE, 2017, 12, e0171925.	1.1	45
40	Gene Therapy: A Promising Approach for Neuroprotection in Parkinson's Disease?. Frontiers in Neuroanatomy, 2016, 10, 123.	0.9	23
41	463. Suspension-Adapted HEK 293 Cells in Orbital Shaken Bioreactors for the Production of Adeno-Associated Virus Vectors. Molecular Therapy, 2016, 24, S183-S184.	3.7	1
42	606. Use of a Bicistronic Vector to Silence SOD1 in Motoneurons and Astrocytes for the Treatment of Familial Amyotrophic Lateral Sclerosis. Molecular Therapy, 2016, 24, S240.	3.7	1
43	Lentiviral Vectors for the Engineering of Implantable Cells Secreting Recombinant Antibodies. Methods in Molecular Biology, 2016, 1448, 139-155.	0.4	2
44	Amyloid-Î ² plaque deposition measured using propagation-based X-ray phase contrast CT imaging. Journal of Synchrotron Radiation, 2016, 23, 813-819.	1.0	27
45	Regulation of Memory Formation by the Transcription Factor XBP1. Cell Reports, 2016, 14, 1382-1394.	2.9	142
46	A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies. Brain, 2016, 139, 1587-1604.	3.7	33
47	InÂVivo Evidence for a Lactate Gradient from Astrocytes to Neurons. Cell Metabolism, 2016, 23, 94-102.	7.2	437
48	Axonal Localization of Integrins in the CNS Is Neuronal Type and Age Dependent. ENeuro, 2016, 3, ENEURO.0029-16.2016.	0.9	40
49	SOD1 silencing in motoneurons or glia rescues neuromuscular function in <scp>ALS</scp> mice. Annals of Clinical and Translational Neurology, 2015, 2, 167-184.	1.7	54
50	465. Transient Production of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Therapy Applications Using Suspension-Adapted HEK 293 Cells in Orbital Shaken Bioreactors. Molecular Therapy, 2015, 23, S184-S185.	3.7	0
51	Αlpha-Synuclein as a Mediator in the Interplay between Aging and Parkinson's Disease. Biomolecules, 2015, 5, 2675-2700.	1.8	49
52	Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nature Neuroscience, 2015, 18, 227-238.	7.1	85
53	Encapsulated Cellular Implants for Recombinant Protein Delivery and Therapeutic Modulation of the Immune System. International Journal of Molecular Sciences, 2015, 16, 10578-10600.	1.8	39
54	<i>Tmc</i> gene therapy restores auditory function in deaf mice. Science Translational Medicine, 2015, 7, 295ra108.	5.8	222

#	Article	IF	CITATIONS
55	Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nature Neuroscience, 2015, 18, 1101-1108.	7.1	146
56	PGC-1α activity in nigral dopamine neurons determines vulnerability to α-synuclein. Acta Neuropathologica Communications, 2015, 3, 16.	2.4	74
57	The adipocyte differentiation protein APMAP is an endogenous suppressor of AÎ ² production in the brain. Human Molecular Genetics, 2015, 24, 371-382.	1.4	28
58	Channel-Mediated Lactate Release by K ⁺ -Stimulated Astrocytes. Journal of Neuroscience, 2015, 35, 4168-4178.	1.7	163
59	Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease. Neurobiology of Disease, 2015, 77, 49-61.	2.1	44
60	Chondroitinase gene therapy improves upper limb function following cervical contusion injury. Experimental Neurology, 2015, 271, 131-135.	2.0	58
61	Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. Experimental Neurology, 2015, 265, 48-58.	2.0	104
62	α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9). Neurobiology of Disease, 2015, 73, 229-243.	2.1	32
63	Large-Scale Chondroitin Sulfate Proteoglycan Digestion with Chondroitinase Gene Therapy Leads to Reduced Pathology and Modulates Macrophage Phenotype following Spinal Cord Contusion Injury. Journal of Neuroscience, 2014, 34, 4822-4836.	1.7	200
64	Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Human Molecular Genetics, 2014, 23, 4621-4638.	1.4	126
65	A high-capacity cell macroencapsulation system supporting the long-term survival of genetically engineered allogeneic cells. Biomaterials, 2014, 35, 779-791.	5.7	54
66	Intracerebroventricular Injection of Adeno-Associated Virus 6 and 9 Vectors for Cell Type–Specific Transgene Expression in the Spinal Cord. Human Gene Therapy, 2014, 25, 109-120.	1.4	54
67	A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity. Human Molecular Genetics, 2014, 23, 4887-4905.	1.4	45
68	Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6804-6809.	3.3	183
69	FOXO3 determines the accumulation of α-synuclein and controls the fate of dopaminergic neurons in the substantia nigra. Human Molecular Genetics, 2014, 23, 1435-1452.	1.4	84
70	Application of Viral Vectors to Motor Neuron Disorders. Neuromethods, 2014, , 221-242.	0.2	0
71	Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation. Biomaterials, 2014, 35, 792-802.	5.7	14
72	Loss of MITF expression during human embryonic stem cell differentiation disrupts retinal pigment epithelium development and optic vesicle cell proliferation. Human Molecular Genetics, 2014, 23, 6332-6344.	1.4	55

#	Article	IF	CITATIONS
73	Overview of Mouse Models of Parkinson's Disease. Current Protocols in Mouse Biology, 2014, 4, 121-139.	1.2	13
74	An <i>in vivo</i> ultrahigh field 14.1 T ¹ Hâ€MRS study on 6â€OHDA and αâ€synucleinâ€based models of Parkinson's disease: GABA as an early disease marker. NMR in Biomedicine, 2013, 26, 43-50.	rat 1.6	37
75	Overexpression of parkin in the rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity. Experimental Neurology, 2013, 247, 359-372.	2.0	34
76	Direct and Retrograde Transduction of Nigral Neurons with AAV6, 8, and 9 and Intraneuronal Persistence of Viral Particles. Human Gene Therapy, 2013, 24, 613-629.	1.4	51
77	Focal expression of adeno-associated viral-mutant tau induces widespread impairment in an APP mouse model. Neurobiology of Aging, 2013, 34, 1355-1368.	1.5	8
78	Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature, 2013, 499, 336-340.	13.7	301
79	Measurement of autophagy flux in the nervous system in vivo. Cell Death and Disease, 2013, 4, e917-e917.	2.7	97
80	Polo-like kinase 2 regulates selective autophagic α-synuclein clearance and suppresses its toxicity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3945-54.	3.3	160
81	Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain. Journal of Clinical Investigation, 2013, 123, 3002-3013.	3.9	113
82	Sustained expression of PGC-1Â in the rat nigrostriatal system selectively impairs dopaminergic function. Human Molecular Genetics, 2012, 21, 1861-1876.	1.4	105
83	Mimicking Phosphorylation at Serine 87 Inhibits the Aggregation of Human α-Synuclein and Protects against Its Toxicity in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2012, 32, 1536-1544.	1.7	84
84	Proton and Phosphorus Magnetic Resonance Spectroscopy of a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 31, S87-S99.	1.2	40
85	Endoplasmic Reticulum Stress Is Important for the Manifestations of α-Synucleinopathy <i>In Vivo</i> . Journal of Neuroscience, 2012, 32, 3306-3320.	1.7	319
86	Parkinson's Disease: Gene Therapies. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009431-a009431.	2.9	80
87	α-Synuclein in Central Nervous System and from Erythrocytes, Mammalian Cells, and Escherichia coli Exists Predominantly as Disordered Monomer. Journal of Biological Chemistry, 2012, 287, 15345-15364.	1.6	466
88	Nigrostriatal overabundance of α-synuclein leads to decreased vesicle density and deficits in dopamine release that correlate with reduced motor activity. Acta Neuropathologica, 2012, 123, 653-669.	3.9	132
89	Rab1A Over-Expression Prevents Golgi Apparatus Fragmentation and Partially Corrects Motor Deficits in an Alpha-Synuclein Based Rat Model of Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 373-387.	1.5	61
90	Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons. Journal of Neuroscience Methods, 2011, 201, 228-238.	1.3	80

#	Article	IF	CITATIONS
91	Neuroprotection by Gene Therapy Targeting Mutant SOD1 in Individual Pools of Motor Neurons Does not Translate Into Therapeutic Benefit in fALS Mice. Molecular Therapy, 2011, 19, 274-283.	3.7	53
92	A Rat Model of Progressive Nigral Neurodegeneration Induced by the Parkinson's Disease-Associated G2019S Mutation in LRRK2. Journal of Neuroscience, 2011, 31, 907-912.	1.7	135
93	Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Therapy, 2010, 17, 141-146.	2.3	112
94	Longâ€ r ange connectivity of mouse primary somatosensory barrel cortex. European Journal of Neuroscience, 2010, 31, 2221-2233.	1.2	285
95	Phosphorylation at S87 Is Enhanced in Synucleinopathies, Inhibits α-Synuclein Oligomerization, and Influences Synuclein-Membrane Interactions. Journal of Neuroscience, 2010, 30, 3184-3198.	1.7	271
96	Phosphorylation Does Not Prompt, Nor Prevent, the Formation of Â-synuclein Toxic Species in a Rat Model of Parkinson's Disease. Human Molecular Genetics, 2009, 18, 872-87.	1.4	172
97	Targeted overexpression of the parkin substrate Pael-R in the nigrostriatal system of adult rats to model Parkinson's disease. Neurobiology of Disease, 2009, 35, 32-41.	2.1	54
98	Viral Vectors. , 2008, , 269-284.		0
99	Regulation of Prenatal Human Retinal Neurosphere Growth and Cell Fate Potential by Retinal Pigment Epithelium and Mash1. Stem Cells, 2008, 26, 3182-3193.	1.4	29
100	Viral vectors, animal models and new therapies for Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, S169-S171.	1.1	15
101	Systemic AAV6 Delivery Mediating RNA Interference Against SOD1: Neuromuscular Transduction Does Not Alter Disease Progression in fALS Mice. Molecular Therapy, 2008, 16, 1018-1025.	3.7	105
102	Over-expression of alpha-synuclein in human neural progenitors leads to specific changes in fate and differentiation. Human Molecular Genetics, 2007, 16, 651-666.	1.4	68
103	Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy. Journal of Neuroscience Methods, 2007, 163, 338-349.	1.3	75
104	Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Therapy, 2006, 13, 379-388.	2.3	159
105	Transient striatal delivery of GDNF via encapsulated cells leads to sustained behavioral improvement in a bilateral model of Parkinson disease. Neurobiology of Disease, 2006, 22, 119-129.	2.1	79
106	Inducing Tolerance to a Soluble Foreign Antigen by Encapsulated Cell Transplants. Molecular Therapy, 2006, 13, 447-456.	3.7	8
107	Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an Â-synuclein rat model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17510-17515.	3.3	310
108	Survival of Encapsulated Human Primary Fibroblasts and Erythropoietin Expression Under Xenogeneic Conditions. Human Gene Therapy, 2004, 15, 669-680.	1.4	34

#	Article	IF	CITATIONS
109	Using human neural stem cells to model neurological disease. Nature Reviews Genetics, 2004, 5, 136-144.	7.7	75
110	Cellular implants: pioneers in xenotransplantation?. Xenotransplantation, 2003, 10, 96-97.	1.6	1
111	Prevention of the initial host immuno-inflammatory response determines the long-term survival of encapsulated myoblasts genetically engineered for erythropoietin delivery. Molecular Therapy, 2003, 7, 506-514.	3.7	36
112	Â-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10813-10818.	3.3	488
113	Long-Term Doxycycline-Regulated Secretion of Erythropoietin by Encapsulated Myoblasts. Molecular Therapy, 2002, 6, 155-161.	3.7	35
114	Delivery of erythropoietin by encapsulated myoblasts in a genetic model of severe anemia. Kidney International, 2002, 62, 1395-1401.	2.6	32
115	Insulin-Like Growth Factor-I Is Necessary for Neural Stem Cell Proliferation and Demonstrates Distinct Actions of Epidermal Growth Factor and Fibroblast Growth Factor-2. Journal of Neuroscience, 2001, 21, 7194-7202.	1.7	239
116	INDUCING HOST ACCEPTANCE TO ENCAPSULATED XENOGENEIC MYOBLASTS. Transplantation, 2001, 71, 345-351.	0.5	9
117	A self-immunomodulating myoblast cell line for erythropoietin delivery. Gene Therapy, 2001, 8, 58-66.	2.3	13
118	Selective Vulnerability of Neuronal Subtypes in ALS: A Fertile Ground for the Identification of Therapeutic Targets. , 0, , .		1