Inna Karpenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322114/publications.pdf

Version: 2024-02-01

687220 642610 33 595 13 23 citations h-index g-index papers 42 42 42 740 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	3′-Amino modifications enhance the antifungal properties of ⟨i⟩N⟨/i⟩⟨sup>4⟨/sup>-alkyl-5-methylcytidines for potential biocides. New Journal of Chemistry, 2022, 46, 5614-5626.	1.4	6
2	Cultivation of Cells in a Physiological Plasmax Medium Increases Mitochondrial Respiratory Capacity and Reduces Replication Levels of RNA Viruses. Antioxidants, 2022, 11 , 97 .	2.2	20
3	Glycol and Phosphate Depot Forms of 4- and/or 5-Modified Nucleosides Exhibiting Antibacterial Activity. Molecular Biology, 2021, 55, 143-153.	0.4	4
4	Discovery of novel N4-alkylcytidines as promising antimicrobial agents. European Journal of Medicinal Chemistry, 2021, 215, 113212.	2.6	7
5	The immune response to the novel coronavirus infection. Journal of Clinical Practice, 2021, 12, 33-40.	0.2	2
6	Peroxiredoxinsâ€"The Underrated Actors during Virus-Induced Oxidative Stress. Antioxidants, 2021, 10, 977.	2.2	16
7	5-Alkylthiomethyl Derivatives of 2'-Deoxyuridine: Synthesis and Antibacterial Activity. Russian Journal of Bioorganic Chemistry, 2020, 46, 133-138.	0.3	1
8	DEAD-box RNA Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as Antiviral and Anticancer Drugs. Molecules, 2020, 25, 1015.	1.7	54
9	Synthesis of water-soluble prodrugs of 5-modified $2\hat{E}^1$ -deoxyuridines and their antibacterial activity. Journal of Antibiotics, 2020, 73, 236-246.	1.0	14
10	Novel 5-substituted derivatives of 2'-deoxy-6-azauridine with antibacterial activity. Journal of Antibiotics, 2019, 72, 535-544.	1.0	9
11	5-(4-alkyl-1,2,3-triazol-1-yl)methyl derivatives of 2′-deoxyuridine as inhibitors of viral and bacterial growth. Russian Journal of Bioorganic Chemistry, 2016, 42, 677-684.	0.3	17
12	5â€Arylaminouracil Derivatives: New Inhibitors of <i>Mycobacterium tuberculosis</i> . Chemical Biology and Drug Design, 2015, 86, 1387-1396.	1.5	16
13	HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells. Viruses, 2015, 7, 2745-2770.	1.5	71
14	Synthesis and antimicrobial properties of 5,5 \hat{a} \in 2-modified $2\hat{a}$ \in 2-dideoxyuridines. Heterocyclic Communications, 2015, 21, 297-301.	0.6	1
15	New 5-modified $2\hat{a}\in^2$ -deoxyuridine derivatives: synthesis and antituberculosis activity. Russian Chemical Bulletin, 2014, 63, 1197-1200.	0.4	7
16	Acyclovir phosphoramidates as potential anti-HIV drugs. Russian Chemical Bulletin, 2014, 63, 1192-1196.	0.4	2
17	New Dinucleoside Phosphonate Derivatives as Prodrugs of 3′-Azido-3′-Deoxythymidine and β -L-2′,3′-Dideoxy-3′-Thiacytidine: Synthesis and Anti-HIV Properties. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 64-79.	5 0.4	5
18	Synthesis of acyclic nucleoside analogues based on 1,2,4-triazolo[1,5-a]pyrimidin-7-ones by one-step Vorbrüggen glycosylation. Tetrahedron, 2014, 70, 1298-1305.	1.0	11

#	Article	IF	CITATIONS
19	A new antiviral: Chimeric 3TC–AZT phosphonate efficiently inhibits HIV-1 in human tissues ex vivo. Antiviral Research, 2014, 109, 125-131.	1.9	7
20	Inhibition of Mycobacterium tuberculosis strains H37Rv and MDR MS-115 by a new set of C5 modified pyrimidine nucleosides. Bioorganic and Medicinal Chemistry, 2013, 21, 4874-4884.	1.4	41
21	The synthesis and antituberculosis activity of 5′-nor carbocyclic uracil derivatives. Bioorganic and Medicinal Chemistry, 2012, 20, 6680-6686.	1.4	49
22	Synthesis and Antiâ€HIV Properties of New Carbamate Prodrugs of AZT. Chemical Biology and Drug Design, 2012, 80, 947-952.	1.5	13
23	5′â€Phosphonate Derivatives of 2′,3′â€Dideoxyâ€3′â€Thiacytidine as New Antiâ€HIV Prodrugs. Chemi Drug Design, 2011, 78, 50-56.	ical Biolog	y ₅ and
24	1,2,4-Triazoloazine derivatives as a new type of herpes simplex virus inhibitors. Bioorganic Chemistry, 2010, 38, 265-270.	2.0	23
25	Antiviral Properties, Metabolism, and Pharmacokinetics of a Novel Azolo-1,2,4-Triazine-Derived Inhibitor of Influenza A and B Virus Replication. Antimicrobial Agents and Chemotherapy, 2010, 54, 2017-2022.	1.4	64
26	Antiherpetic Properties of Acyclovir 5′â€Hydrogenphosphonate and the Mutation Analysis of Herpes Virus Resistant Strains. Chemical Biology and Drug Design, 2009, 74, 382-389.	1.5	18
27	Cell Metabolism of Acyclovir Phosphonate Derivatives and Antiherpesvirus Activity of their Combinations with ?2-Interferon. Chemical Biology and Drug Design, 2007, 69, 429-434.	1.5	11
28	Adenosine N1-Oxide Analogues as Inhibitors of Orthopox Virus Replication. Collection of Czechoslovak Chemical Communications, 2006, 71, 1107-1121.	1.0	8
29	Intracellular metabolism and pharmacokinetics of 5′-hydrogenphosphonate of 3′-azido-2′,3′-dideoxythymidine, a prodrug of 3′-azido-2′,3′-dideoxythymidine. Antiviral Research 107-113.	, 2.0 04, 63	,26
30	The Synthesis and Antiherpetic Activity of Acyclovir Phosphonate Esters. Russian Journal of Bioorganic Chemistry, 2004, 30, 539-546.	0.3	2
31	Synthesis and Antiherpetic Activity of Acyclovir Phosphonates. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 319-328.	0.4	11
32	ANTI-HIV ACTIVITY OF NOVEL PHOSPHONATE DERIVATIVES OF AZT, d4T, AND ddA. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 767-769.	0.4	22
33	<i>P</i> -(Alkyl)-Nucleoside 5′-Hydrogenphosphonates as Depot Forms of Antiviral Nucleotide Analogues. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1795-1804.	0.4	10