
Inna Karpenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells. Viruses, 2015, 7, 2745-2770.	3.3	71
2	Antiviral Properties, Metabolism, and Pharmacokinetics of a Novel Azolo-1,2,4-Triazine-Derived Inhibitor of Influenza A and B Virus Replication. Antimicrobial Agents and Chemotherapy, 2010, 54, 2017-2022.	3.2	64
3	DEAD-box RNA Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as Antiviral and Anticancer Drugs. Molecules, 2020, 25, 1015.	3.8	54
4	The synthesis and antituberculosis activity of 5′-nor carbocyclic uracil derivatives. Bioorganic and Medicinal Chemistry, 2012, 20, 6680-6686.	3.0	49
5	Inhibition of Mycobacterium tuberculosis strains H37Rv and MDR MS-115 by a new set of C5 modified pyrimidine nucleosides. Bioorganic and Medicinal Chemistry, 2013, 21, 4874-4884.	3.0	41
6	Intracellular metabolism and pharmacokinetics of 5′-hydrogenphosphonate of 3′-azido-2′,3′-dideoxythymidine, a prodrug of 3′-azido-2′,3′-dideoxythymidine. Antiviral Research 107-113.	n, 210 04, 6	3,26
7	1,2,4-Triazoloazine derivatives as a new type of herpes simplex virus inhibitors. Bioorganic Chemistry, 2010, 38, 265-270.	4.1	23
8	ANTI-HIV ACTIVITY OF NOVEL PHOSPHONATE DERIVATIVES OF AZT, d4T, AND ddA. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 767-769.	1.1	22
9	Cultivation of Cells in a Physiological Plasmax Medium Increases Mitochondrial Respiratory Capacity and Reduces Replication Levels of RNA Viruses. Antioxidants, 2022, 11, 97.	5.1	20
10	Antiherpetic Properties of Acyclovir 5′â€Hydrogenphosphonate and the Mutation Analysis of Herpes Virus Resistant Strains. Chemical Biology and Drug Design, 2009, 74, 382-389.	3.2	18
11	5-(4-alkyl-1,2,3-triazol-1-yl)methyl derivatives of 2′-deoxyuridine as inhibitors of viral and bacterial growth. Russian Journal of Bioorganic Chemistry, 2016, 42, 677-684.	1.0	17
12	5â€Arylaminouracil Derivatives: New Inhibitors of <i>Mycobacterium tuberculosis</i> . Chemical Biology and Drug Design, 2015, 86, 1387-1396.	3.2	16
13	Peroxiredoxins—The Underrated Actors during Virus-Induced Oxidative Stress. Antioxidants, 2021, 10, 977.	5.1	16
14	Synthesis of water-soluble prodrugs of 5-modified 2ʹ-deoxyuridines and their antibacterial activity. Journal of Antibiotics, 2020, 73, 236-246.	2.0	14
15	Synthesis and Antiâ€HIV Properties of New Carbamate Prodrugs of AZT. Chemical Biology and Drug Design, 2012, 80, 947-952.	3.2	13
16	Synthesis and Antiherpetic Activity of Acyclovir Phosphonates. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 319-328.	1.1	11
17	Cell Metabolism of Acyclovir Phosphonate Derivatives and Antiherpesvirus Activity of their Combinations with ?2-Interferon. Chemical Biology and Drug Design, 2007, 69, 429-434.	3.2	11
18	Synthesis of acyclic nucleoside analogues based on 1,2,4-triazolo[1,5-a]pyrimidin-7-ones by one-step Vorbr¼ggen glycosylation. Tetrahedron, 2014, 70, 1298-1305.	1.9	11

Inna Karpenko

#	Article	IF	CITATIONS
19	<i>P</i> -(Alkyl)-Nucleoside 5′-Hydrogenphosphonates as Depot Forms of Antiviral Nucleotide Analogues. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1795-1804.	1.1	10
20	Novel 5-substituted derivatives of 2'-deoxy-6-azauridine with antibacterial activity. Journal of Antibiotics, 2019, 72, 535-544.	2.0	9
21	Adenosine N1-Oxide Analogues as Inhibitors of Orthopox Virus Replication. Collection of Czechoslovak Chemical Communications, 2006, 71, 1107-1121.	1.0	8
22	New 5-modified 2′-deoxyuridine derivatives: synthesis and antituberculosis activity. Russian Chemical Bulletin, 2014, 63, 1197-1200.	1.5	7
23	A new antiviral: Chimeric 3TC–AZT phosphonate efficiently inhibits HIV-1 in human tissues ex vivo. Antiviral Research, 2014, 109, 125-131.	4.1	7
24	Discovery of novel N4-alkylcytidines as promising antimicrobial agents. European Journal of Medicinal Chemistry, 2021, 215, 113212.	5.5	7
25	3′-Amino modifications enhance the antifungal properties of <i>N</i> ⁴ -alkyl-5-methylcytidines for potential biocides. New Journal of Chemistry, 2022, 46, 5614-5626.	2.8	6
26	5′â€Phosphonate Derivatives of 2′,3′â€Dideoxyâ€3′â€Thiacytidine as New Antiâ€HIV Prodrugs. Chem Drug Design, 2011, 78, 50-56.	iical Biolo 3.2	ogy ₅ and
27	New Dinucleoside Phosphonate Derivatives as Prodrugs of 3′-Azido-3′-Deoxythymidine and β -L-2′,3′-Dideoxy-3′-Thiacytidine: Synthesis and Anti-HIV Properties. Nucleosides, Nucleotide and Nucleic Acids, 2014, 33, 64-79.	s 1.1	5
28	Glycol and Phosphate Depot Forms of 4- and/or 5-Modified Nucleosides Exhibiting Antibacterial Activity. Molecular Biology, 2021, 55, 143-153.	1.3	4
29	The Synthesis and Antiherpetic Activity of Acyclovir Phosphonate Esters. Russian Journal of Bioorganic Chemistry, 2004, 30, 539-546.	1.0	2
30	Acyclovir phosphoramidates as potential anti-HIV drugs. Russian Chemical Bulletin, 2014, 63, 1192-1196.	1.5	2
31	The immune response to the novel coronavirus infection. Journal of Clinical Practice, 2021, 12, 33-40.	0.6	2
32	Synthesis and antimicrobial properties of 5,5′-modified 2′,5′-dideoxyuridines. Heterocyclic Communications, 2015, 21, 297-301.	1.2	1
33	5-Alkylthiomethyl Derivatives of 2'-Deoxyuridine: Synthesis and Antibacterial Activity. Russian Journal of Bioorganic Chemistry, 2020, 46, 133-138.	1.0	1