
## Ricardo I.F. Trindade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2322070/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF                        | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|
| 1  | The position of the Amazonian Craton in supercontinents. Gondwana Research, 2009, 15, 396-407.                                                                                                                          | 3.0                       | 208           |
| 2  | Paleomagnetic record of Africa and South America for the 1200–500Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Research, 2006, 147, 193-222.                                              | 1.2                       | 195           |
| 3  | Tearing up Rodinia: the Neoproterozoic palaeogeography of South American cratonic fragments. Terra<br>Nova, 2003, 15, 350-359.                                                                                          | 0.9                       | 192           |
| 4  | Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of<br>Gondwana. Earth and Planetary Science Letters, 2006, 244, 361-377.                                                      | 1.8                       | 147           |
| 5  | Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon<br>craton. Terra Nova, 2003, 15, 441-446.                                                                              | 0.9                       | 145           |
| 6  | Direct dating of the Sete Lagoas cap carbonate (BambuÃ-Group, Brazil) and implications for the<br>Neoproterozoic glacial events. Terra Nova, 2007, 19, 401-406.                                                         | 0.9                       | 130           |
| 7  | Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective. Earth and Planetary Science Letters, 2014, 396, 1-13.                                                           | 1.8                       | 119           |
| 8  | A multilayered water column in the Ediacaran Yangtze platform? Insights from carbonate and organic matter paired δ13C. Earth and Planetary Science Letters, 2009, 288, 213-227.                                         | 1.8                       | 109           |
| 9  | Closing the Clymene ocean and bending a Brasiliano belt: Evidence for the Cambrian formation of<br>Gondwana, southeast Amazon craton. Geology, 2010, 38, 267-270.                                                       | 2.0                       | 99            |
| 10 | Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nature Ecology and Evolution, 2017, 1, 1455-1464.                                                         | 3.4                       | 95            |
| 11 | Neoproterozoic glacial deposits from the AraçuaÃ-orogen, Brazil: Age, provenance and correlations<br>with the São Francisco craton and West Congo belt. Gondwana Research, 2012, 21, 451-465.                           | 3.0                       | 87            |
| 12 | Chemostratigraphy of the Neoproterozoic Mirassol d'Oeste cap dolostones (Mato Grosso, Brazil): An<br>alternative model for Marinoan cap dolostone formation. Earth and Planetary Science Letters, 2006,<br>250, 89-103. | 1.8                       | 82            |
| 13 | Carbon and strontium isotope fluctuations and paleoceanographic changes in the late<br>Neoproterozoic Araras carbonate platform, southern Amazon craton, Brazil. Chemical Geology, 2007,<br>237, 168-190.               | 1.4                       | 81            |
| 14 | A carbon isotope challenge to the snowball Earth. Nature, 2011, 478, 93-96.                                                                                                                                             | 13.7                      | 74            |
| 15 | Geochronological constraints on the age of a Permo–Triassic impact event: U–Pb and 40Ar/39Ar<br>results for the 40km Araguainha structure of central Brazil. Geochimica Et Cosmochimica Acta, 2012,<br>86, 214-227.     | 1.6                       | 74            |
| 16 | New evidence of an Ediacaran age for the BambuÃ-Group in southern São Francisco craton (eastern) Tj ETQq(                                                                                                               | ) 0 0 <sub>3</sub> rgBT / | Overlock 10 T |

| 17 | Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites.<br>Scientific Reports, 2016, 6, 24762.                                        | 1.6 | 71 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 18 | Identification of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate platform,<br>BambuÃ-Group, Brazil. Comptes Rendus - Geoscience, 2007, 339, 240-258. | 0.4 | 67 |

| #  | Article                                                                                                                                                                                                                                          | IF               | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 19 | Columbia revisited: Paleomagnetic results from the 1790Ma colider volcanics (SW Amazonian Craton,) Tj ETQq1                                                                                                                                      | 1 0,78431<br>1.2 | 4 rgBT /Ov  |
| 20 | Origin of increased terrigenous supply to the NE South American continental margin during Heinrich<br>Stadial 1 and the Younger Dryas. Earth and Planetary Science Letters, 2015, 432, 493-500.                                                  | 1.8              | 65          |
| 21 | Granite fabrics and regional-scale strain partitioning in the SeridÃ <sup>3</sup> belt (Borborema Province, NE) Tj ETQq1 1 0.78                                                                                                                  | 4314 rgB1<br>1.3 | ⊺ /Qverlock |
| 22 | Palaeolatitude of glacial deposits and palaeogeography of Neoproterozoic ice ages. Comptes Rendus -<br>Geoscience, 2007, 339, 200-211.                                                                                                           | 0.4              | 59          |
| 23 | Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton: Evidence<br>for Grenvillian emplacement of exotic crust in SE Appalachians of North America. Earth and Planetary<br>Science Letters, 2008, 267, 188-199. | 1.8              | 58          |
| 24 | Magnetic susceptibility and partial anhysteretic remanence anisotropies in the magnetite-bearing granite pluton of TourA£o, NE Brazil. Tectonophysics, 1999, 314, 443-468.                                                                       | 0.9              | 55          |
| 25 | Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictites and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana Research, 2013, 23, 988-997.                                                    | 3.0              | 55          |
| 26 | The 1420Ma IndiavaÃ-Mafic Intrusion (SW Amazonian Craton): Paleomagnetic results and implications<br>for the Columbia supercontinent. Gondwana Research, 2012, 22, 956-973.                                                                      | 3.0              | 52          |
| 27 | Was there SAMBA in Columbia? Paleomagnetic evidence from 1790Ma Avanavero mafic sills (northern) Tj ETQq1                                                                                                                                        | 1 0 78431<br>1.2 | .4.rgBT /Ov |
| 28 | Simultaneous remagnetization and U–Pb isotope resetting in Neoproterozoic carbonates of the São<br>Francisco craton, Brazil. Precambrian Research, 2000, 99, 179-196.                                                                            | 1.2              | 50          |
| 29 | The continental record of Ediacaran volcanoâ€sedimentary successions in southern Brazil and their global implications. Terra Nova, 2008, 20, 259-266.                                                                                            | 0.9              | 50          |
| 30 | Fast or slow melting of the Marinoan snowball Earth? The cap dolostone record. Palaeogeography,<br>Palaeoclimatology, Palaeoecology, 2010, 295, 215-225.                                                                                         | 1.0              | 50          |
| 31 | A red algal bloom in the aftermath of the Marinoan Snowball Earth. Terra Nova, 2007, 19, 303-308.                                                                                                                                                | 0.9              | 49          |
| 32 | Bone Immune Response to Materials, Part I: Titanium, PEEK and Copper in Comparison to Sham at 10 Days<br>in Rabbit Tibia. Journal of Clinical Medicine, 2018, 7, 526.                                                                            | 1.0              | 48          |
| 33 | Paleomagnetism and geochronology of the Bebedouro cap carbonate: evidence for continental-scale<br>Cambrian remagnetization in the SA£o Francisco craton, Brazil. Precambrian Research, 2004, 128, 83-103.                                       | 1.2              | 47          |
| 34 | Archeointensity in Northeast Brazil over the past five centuries. Earth and Planetary Science Letters, 2010, 296, 340-352.                                                                                                                       | 1.8              | 47          |
| 35 | Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil. Bulletin of the Geological Society of America, 2015, 127, 76-86.                                               | 1.6              | 47          |
| 36 | The Ribeirão da Folha ophiolite-bearing accretionary wedge (AraçuaÃ-orogen, SE Brazil): New data for<br>Cryogenian plagiogranite and metasedimentary rocks. Precambrian Research, 2020, 336, 105522.                                             | 1.2              | 47          |

| #  | Article                                                                                                                                                                                                                                    | IF             | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| 37 | Tectonic implications of the 1419Ma Nova Guarita mafic intrusives paleomagnetic pole (Amazonian) Tj ETQq1 1 C                                                                                                                              | .784314<br>1.2 | rgBT /Overl |
| 38 | G'day Gondwana — the final accretion of a supercontinent: U–Pb ages from the post-orogenic São<br>Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Research, 2012, 21, 316-322.                                                   | 3.0            | 46          |
| 39 | Paleomagnetism and 40Ar/39Ar ages of mafic dikes from Salvador (Brazil): new constraints on the São<br>Francisco craton APW path between 1080 and 1010 Ma. Precambrian Research, 2004, 132, 55-77.                                         | 1.2            | 45          |
| 40 | New historical archeointensity data from Brazil: Evidence for a large regional non-dipole field contribution over the past few centuries. Earth and Planetary Science Letters, 2011, 306, 66-76.                                           | 1.8            | 45          |
| 41 | Paleomagnetism of the Amazonian Craton and its role in paleocontinents. Brazilian Journal of Geology, 2016, 46, 275-299.                                                                                                                   | 0.3            | 45          |
| 42 | A late Neoproterozoic paleomagnetic pole for the Congo craton: Tectonic setting, paleomagnetism<br>and geochronology of the Nola dike swarm (Central African Republic). Precambrian Research, 2008,<br>164, 214-226.                       | 1.2            | 44          |
| 43 | Return to Rodinia? Moderate to high palaeolatitude of the São Francisco/Congo craton at 920 Ma.<br>Geological Society Special Publication, 2016, 424, 167-190.                                                                             | 0.8            | 43          |
| 44 | Relating the South Atlantic Anomaly and geomagnetic flux patches. Physics of the Earth and Planetary<br>Interiors, 2017, 266, 39-53.                                                                                                       | 0.7            | 42          |
| 45 | Tracking connection and restriction of West Gondwana São Francisco Basin through isotope chemostratigraphy. Gondwana Research, 2017, 42, 280-305.                                                                                          | 3.0            | 42          |
| 46 | Turmoil before the boring billion: Paleomagnetism of the 1880–1860 Ma Uatumã event in the<br>Amazonian craton. Gondwana Research, 2017, 49, 106-129.                                                                                       | 3.0            | 41          |
| 47 | Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Cl-rich acidic<br>hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, Anti-Atlas, Morocco).<br>Precambrian Research, 2017, 300, 151-167. | 1.2            | 40          |
| 48 | Secondary fabrics revealed by remanence anisotropy: methodological study and examples from plutonic rocks. Geophysical Journal International, 2001, 147, 310-318.                                                                          | 1.0            | 38          |
| 49 | Sedimentological and provenance response to Cambrian closure of the Clymene ocean: The upper Alto<br>Paraguai Group, Paraguay belt, Brazil. Gondwana Research, 2012, 21, 323-340.                                                          | 3.0            | 37          |
| 50 | Enhanced primary productivity and magnetotactic bacterial production in response to middle Eocene<br>warming in the Neo-Tethys Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414, 32-45.                                 | 1.0            | 37          |
| 51 | Mid-Cretaceous marine Os isotope evidence for heterogeneous cause of oceanic anoxic events. Nature Communications, 2022, 13, 239.                                                                                                          | 5.8            | 37          |
| 52 | Towards Columbia: Paleomagnetism of 1980–1960Ma Surumu volcanic rocks, Northern Amazonian<br>Craton. Precambrian Research, 2014, 244, 123-138.                                                                                             | 1.2            | 36          |
| 53 | Magnetic fabric of a basaltic dyke swarm associated with Mesozoic rifting in northeastern Brazil.<br>Journal of South American Earth Sciences, 2000, 13, 179-189.                                                                          | 0.6            | 35          |
| 54 | Detrital remanent magnetization in haematite-bearing Neoproterozoic Puga cap dolostone, Amazon<br>craton: a rock magnetic and SEM study. Geophysical Journal International, 2005, 163, 491-500.                                            | 1.0            | 34          |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Imaging downward granitic magma transport in the Rogaland Igneous Complex, SW Norway. Terra<br>Nova, 2002, 14, 87-92.                                                                                                                            | 0.9 | 33        |
| 56 | A palaeomagnetic and <sup>40</sup> Ar/ <sup>39</sup> Ar study of late precambrian sills in the SW part of the Amazonian craton: Amazonia in the Rodinia reconstruction. Geophysical Journal International, 2009, 178, 106-122.                   | 1.0 | 33        |
| 57 | Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic<br>Event (OAE 1a). Global and Planetary Change, 2021, 200, 103461.                                                                              | 1.6 | 33        |
| 58 | Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater. Nature Communications, 2018, 9, 1453.                                                                                                                         | 5.8 | 32        |
| 59 | Paleomagnetism and 40Ar/39Ar geochronology of the high-grade metamorphic rocks of the Jequié<br>block, SĂ£o Francisco Craton: Atlantica, Ur and beyond. Precambrian Research, 2011, 185, 183-201.                                                | 1.2 | 31        |
| 60 | Insights into the morphology, geometry, and post-impact erosion of the Araguainha peak-ring<br>structure, central Brazil. Bulletin of the Geological Society of America, 2007, 119, 1135-1150.                                                   | 1.6 | 30        |
| 61 | Structural evolution of the 40 km wide Araguainha impact structure, central Brazil. Meteoritics and Planetary Science, 2008, 43, 701-716.                                                                                                        | 0.7 | 30        |
| 62 | Paleogeography of the Congo/São Francisco craton at 1.5Ga: Expanding the core of Nuna<br>supercontinent. Precambrian Research, 2016, 286, 195-212.                                                                                               | 1.2 | 30        |
| 63 | Paleomagnetic Constraints on the Rodinia Supercontinent: Implications for its Neoproterozoic<br>Break-up and the Formation of Gondwana. International Geology Review, 1998, 40, 171-188.                                                         | 1.1 | 29        |
| 64 | The La Tinta pole revisited: Paleomagnetism of the Neoproterozoic Sierras Bayas Group (Argentina) and<br>its implications for Gondwana and Rodinia. Precambrian Research, 2013, 224, 51-70.                                                      | 1.2 | 29        |
| 65 | The time dependence of reversed archeomagnetic flux patches. Journal of Geophysical Research: Solid<br>Earth, 2015, 120, 691-704.                                                                                                                | 1.4 | 29        |
| 66 | Investigating midâ€Ediacaran glaciation and final Gondwana amalgamation using coupled sedimentology<br>and <sup>40</sup> Ar/ <sup>39</sup> Ar detrital muscovite provenance from the Paraguay Belt, Brazil.<br>Sedimentology, 2015, 62, 130-154. | 1.6 | 29        |
| 67 | Magnetic anisotropy of the Redenção granite, eastern Amazonian craton (Brazil): Implications for the<br>emplacement of A-type plutons. Tectonophysics, 2010, 493, 27-41.                                                                         | 0.9 | 28        |
| 68 | Shaking a methane fizz: Seismicity from the Araguainha impact event and the Permian–Triassic global carbon isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 387, 66-75.                                                  | 1.0 | 28        |
| 69 | The Moroccan Anti-Atlas ophiolites: Timing and melting processes in an intra-oceanic arc-back-arc environment. Gondwana Research, 2020, 86, 182-202.                                                                                             | 3.0 | 28        |
| 70 | Aragonite Crystal Fans In Neoproterozoic Cap Carbonates: A Case Study From Brazil and Implications<br>For the Post-Snowball Earth Coastal Environment. Journal of Sedimentary Research, 2015, 85, 285-300.                                       | 0.8 | 26        |
| 71 | Continuous millennial decrease of the Earth's magnetic axial dipole. Physics of the Earth and Planetary Interiors, 2018, 274, 72-86.                                                                                                             | 0.7 | 26        |
| 72 | Archeomagnetism of Jesuit Missions in South Brazil (1657–1706 AD) and assessment of the South<br>American database. Earth and Planetary Science Letters, 2016, 445, 36-47.                                                                       | 1.8 | 24        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America). Journal of<br>Geophysical Research: Solid Earth, 2016, 121, 7024-7039.                                                         | 1.4 | 24        |
| 74 | Speleothem record of geomagnetic South Atlantic Anomaly recurrence. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13198-13203.                                         | 3.3 | 24        |
| 75 | A Neoproterozoic hyper-extended margin associated with Rodinia's demise and Gondwana's build-up:<br>The Araguaia Belt, central Brazil. Gondwana Research, 2019, 66, 43-62.                                           | 3.0 | 24        |
| 76 | A Formação Sete Lagoas em sua área-tipo: fácies, estratigrafia e sistemas deposicionais. Revista<br>Brasileira De Geociências, 2007, 37, 1-14.                                                                       | 0.1 | 24        |
| 77 | Remagnetization in bituminous limestones of the Neoproterozoic Araras Group (Amazon craton):<br>Hydrocarbon maturation, burial diagenesis, or both?. Journal of Geophysical Research, 2006, 111,<br>n/a-n/a.         | 3.3 | 23        |
| 78 | Using archaeomagnetic field models to constrain the physics of the core: robustness and preferred locations of reversed flux patches. Geophysical Journal International, 2016, 206, 1890-1913.                       | 1.0 | 23        |
| 79 | Shrimp zircon geochronology constrains on Permian pyroclastic levels, ClaromecÃ <sup>3</sup> Basin, South<br>West margin of Gondwana, Argentina. Journal of South American Earth Sciences, 2018, 85, 191-208.        | 0.6 | 23        |
| 80 | Paleomagnetism of 1.79ÂGa ParÃi de Minas mafic dykes: Testing a São Francisco/Congo-North China-Rio de<br>la Plata connection in Columbia. Precambrian Research, 2020, 338, 105584.                                  | 1.2 | 23        |
| 81 | A large epeiric methanogenic BambuÃ-sea in the core of Gondwana supercontinent?. Geoscience<br>Frontiers, 2021, 12, 203-218.                                                                                         | 4.3 | 23        |
| 82 | Comment on "Was there an Ediacaran Clymene Ocean in central South America?" By U. G. Cordani and<br>others. Numerische Mathematik, 2014, 314, 805-813.                                                               | 0.7 | 22        |
| 83 | Hydrothermally-induced changes in mineralogy and magnetic properties of oxidized A-type granites.<br>Lithos, 2015, 212-215, 145-157.                                                                                 | 0.6 | 22        |
| 84 | Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern<br>Paraguay Belt, Brazil. Precambrian Research, 2018, 307, 1-33.                                                      | 1.2 | 22        |
| 85 | Thermally enhanced mimetic fabric of magnetite in a biotite granite. Geophysical Research Letters, 2001, 28, 2687-2690.                                                                                              | 1.5 | 21        |
| 86 | An expanding list of reliable paleomagnetic poles for Precambrian tectonic reconstructions. , 2021, , 605-639.                                                                                                       |     | 21        |
| 87 | Magnetic fabrics in the Holum granite (Vest-Agder, southernmost Norway): implications for the late evolution of the Sveconorwegian (Grenvillian) orogen of SW Scandinavia. Precambrian Research, 2003, 121, 221-249. | 1.2 | 20        |
| 88 | Episodic Remagnetizations related to tectonic events and their consequences for the South America<br>Polar Wander Path. Geological Society Special Publication, 2012, 371, 55-87.                                    | 0.8 | 20        |
| 89 | Paleoenvironmental reconstruction of the Ediacaran Araras platform (Western Brazil) from the sedimentary and trace metals record. Precambrian Research, 2014, 241, 185-202.                                          | 1.2 | 20        |
| 90 | Sequence stratigraphy and chemostratigraphy of an Ediacaran-Cambrian foreland-related carbonate<br>ramp (BambuÃ-Group, Brazil). Precambrian Research, 2019, 331, 105365.                                             | 1.2 | 20        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Rare earth elements in the terminal Ediacaran BambuÃ-Group carbonate rocks (Brazil): evidence for<br>high seawater alkalinity during rise of early animals. Precambrian Research, 2020, 336, 105506.              | 1.2 | 20        |
| 92  | A Glacially Incised Canyon in Brazil: Further Evidence for Mid-Ediacaran Glaciation?. Journal of Geology, 2013, 121, 275-287.                                                                                     | 0.7 | 18        |
| 93  | Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters. Scientific Reports, 2020, 10, 8163.                                            | 1.6 | 18        |
| 94  | Reassessment of AguapeÃ-(Salto do Céu) paleomagnetic pole, Amazonian Craton and implications for<br>Proterozoic supercontinents. Precambrian Research, 2016, 272, 1-17.                                           | 1.2 | 17        |
| 95  | Hydrothermal alteration in basalts from Vargeão impact structure, south Brazil, and implications for recognition of impact-induced hydrothermalism on Mars. Icarus, 2015, 252, 347-365.                           | 1.1 | 16        |
| 96  | Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: Implications for<br>Archean supercratons. Precambrian Research, 2019, 329, 108-123.                                                | 1.2 | 16        |
| 97  | Astronomical tuning of the Aptian stage and its implications for age recalibrations and paleoclimatic events. Nature Communications, 2022, 13, .                                                                  | 5.8 | 16        |
| 98  | In situ U/Pb dating of impactâ€produced zircons from the Vargeão Dome (Southern Brazil). Meteoritics<br>and Planetary Science, 2013, 48, 420-431.                                                                 | 0.7 | 15        |
| 99  | Magnetic fingerprint of the late Holocene inception of the RÃo de la Plata plume onto the southeast<br>Brazilian shelf. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 415, 183-196.                    | 1.0 | 15        |
| 100 | Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball<br>Earth. Nature Communications, 2016, 7, 12192.                                                              | 5.8 | 15        |
| 101 | Sedimentary facies, fossil distribution and depositional setting of the late Ediacaran Tamengo<br>Formation (Brazil). Sedimentology, 2020, 67, 3422-3450.                                                         | 1.6 | 15        |
| 102 | Non-monotonic growth and motion of the South Atlantic Anomaly. Earth, Planets and Space, 2021, 73, .                                                                                                              | 0.9 | 15        |
| 103 | First archeointensity results from Portuguese potteries (1550-1750 AD). Earth, Planets and Space, 2009, 61, 93-100.                                                                                               | 0.9 | 14        |
| 104 | Spatial-temporal variability of metal pollution across an industrial district, evidencing the environmental inequality in São Paulo. Environmental Pollution, 2020, 263, 114583.                                  | 3.7 | 14        |
| 105 | Selective thermal enhancement of magnetic fabrics from the Carnmenellis granite (British Cornwall).<br>Physics and Chemistry of the Earth, 2002, 27, 1281-1287.                                                   | 1.2 | 13        |
| 106 | Magnetic fabric of Araguainha complex impact structure (Central Brazil): Implications for<br>deformation mechanisms and central uplift formation. Earth and Planetary Science Letters, 2012,<br>331-332, 347-359. | 1.8 | 13        |
| 107 | The coolingâ€rate effect on microwave archeointensity estimates. Geophysical Research Letters, 2013,<br>40, 3847-3852.                                                                                            | 1.5 | 13        |
| 108 | West Africa in Rodinia: High quality paleomagnetic pole from theÂ~Â860ÂMa Manso dyke swarm (Ghana).<br>Gondwana Research, 2021, 94, 28-43.                                                                        | 3.0 | 13        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Cryogenian glaciostatic and eustatic fluctuations and massive Marinoan-related deposition of Fe and<br>Mn in the Urucum District, Brazil. Geology, 2021, 49, 1478-1483.                                               | 2.0 | 13        |
| 110 | AMS fabrics and emplacement model of ButiÃ; Granite, an Ediacaran syntectonic peraluminous granite<br>from southernmost Brazil. Journal of South American Earth Sciences, 2018, 87, 25-41.                            | 0.6 | 12        |
| 111 | The Inventory of the Geological and Paleontological Sites in the Area of the Aspirant Geopark<br>Bodoquena-Pantanal in Brazil. Geoheritage, 2020, 12, 1.                                                              | 1.5 | 12        |
| 112 | New constraints for paleogeographic reconstructions at ca. 1.88ÂGa from geochronology and<br>paleomagnetism of the CarajÄjs dyke swarm (eastern Amazonia). Precambrian Research, 2021, 353, 106039.                   | 1.2 | 12        |
| 113 | Paleoproterozoic Geomagnetic Field Strength From the Avanavero Mafic Sills, Amazonian Craton,<br>Brazil. Geochemistry, Geophysics, Geosystems, 2017, 18, 3891-3903.                                                   | 1.0 | 11        |
| 114 | Mineralogical control on the magnetic anisotropy of lavas and ignimbrites: a case study in the<br>Caviahue-Copahue field (Argentina). Geophysical Journal International, 2020, 220, 821-838.                          | 1.0 | 11        |
| 115 | Magnetic Fabric and Geochronology of a Cambrian "lsotropic―Pluton in the Neoproterozoic AraçuaÃ-<br>Orogen. Tectonics, 2020, 39, e2019TC005877.                                                                       | 1.3 | 11        |
| 116 | Palaeomagnetism of the Permo-Triassic Araguainha impact structure (Central Brazil) and implications for Pangean reconstructions. Geophysical Journal International, 2014, 198, 154-163.                               | 1.0 | 10        |
| 117 | Multi-proxy case study of a Neoproterozoic rhyolite flow in southernmost Brazil: Emplacement<br>mechanisms and implications for ancient felsic lavas. Journal of South American Earth Sciences, 2021,<br>107, 102982. | 0.6 | 10        |
| 118 | Long-term Aptian marine osmium isotopic record of Ontong Java Nui activity. Geology, 2021, 49,<br>1148-1152.                                                                                                          | 2.0 | 10        |
| 119 | The Precambrian drift history and paleogeography of Amazonia. , 2021, , 207-241.                                                                                                                                      |     | 10        |
| 120 | High-Resolution Environmental Magnetism Using the Quantum Diamond Microscope (QDM):<br>Application to a Tropical Speleothem. Frontiers in Earth Science, 2021, 8, .                                                   | 0.8 | 9         |
| 121 | Long-lived intracontinental deformation associated with high geothermal gradients in the SeridÃ <sup>3</sup><br>Belt (Borborema Province, Brazil). Precambrian Research, 2021, 358, 106141.                           | 1.2 | 9         |
| 122 | Paleosecular Variation and the Timeâ€Averaged Geomagnetic Field Since 10ÂMa. Geochemistry, Geophysics,<br>Geosystems, 2021, 22, e2021GC010063.                                                                        | 1.0 | 9         |
| 123 | AMS and grain shape fabric of the Late Palaeozoic diamictites of the Southeastern ParanÃ <sub>i</sub> Basin, Brazil.<br>Journal of the Geological Society, 2006, 163, 95-106.                                         | 0.9 | 8         |
| 124 | Rock magnetism of hematitic "bombs―from the Araguainha impact structure, Brazil. Geochemistry,<br>Geophysics, Geosystems, 2011, 12, n/a-n/a.                                                                          | 1.0 | 8         |
| 125 | Assembling two easy pieces: the geology of western Gondwana and plate tectonic theory - An introduction to the special volume. Gondwana Research, 2012, 21, 311-315.                                                  | 3.0 | 8         |
| 126 | Quantitative interpretation of the magnetic susceptibility frequency dependence. Geophysical Journal<br>International, 2018, 213, 805-814.                                                                            | 1.0 | 8         |

| #   | Article                                                                                                                                                                                                                 | IF              | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 127 | Tectonically-induced strontium isotope changes in ancient restricted seas: The case of the<br>Ediacaran-Cambrian BambuÃ-foreland basin system, east Brazil. Gondwana Research, 2021, 93, 275-290.                       | 3.0             | 8            |
| 128 | LTD-Thellier paleointensity of 1.2 Ga Nova Floresta mafic rocks (Amazon craton). Geophysical Research<br>Letters, 2007, 34, .                                                                                           | 1.5             | 7            |
| 129 | Paleointensity data from Early Cretaceous Ponta Grossa dikes (Brazil) using a multisample method.<br>Earth, Planets and Space, 2009, 61, 41-49.                                                                         | 0.9             | 7            |
| 130 | New archeointensity data from South Brazil and the influence of the South Atlantic Anomaly in South America. Earth and Planetary Science Letters, 2019, 512, 124-133.                                                   | 1.8             | 7            |
| 131 | Emplacement dynamics of alkaline volcanic and subvolcanic rocks in Trindade Island, Brazil. Journal of Volcanology and Geothermal Research, 2020, 406, 107078.                                                          | 0.8             | 7            |
| 132 | Absolute Thellier paleointensities from Ponta Grossa dikes (southern Brazil) and the early Cretaceous geomagnetic field strength. Geofisica International, 2009, 48, 243-252.                                           | 0.2             | 7            |
| 133 | Diamictitic iron formation (DIF) deposits of the Neoproterozoic Nova Aurora Iron District (Macaúbas) Tj ETQq1 1                                                                                                         | 0,784314<br>0.6 | rgBT /Overl  |
| 134 | Doushantuo-Pertatataka—Like Acritarchs From the Late Ediacaran Bocaina Formation (Corumbá) Tj ETQq0 0 0                                                                                                                 | rgBT /Over      | lock 10 Tf 5 |
| 135 | Is the Neoproterozoic oxygen burst a supercontinent legacy?. Frontiers in Earth Science, 2015, 3, .                                                                                                                     | 0.8             | 6            |
| 136 | The Barremian-Aptian boundary in the Poggio le Guaine core (central Italy): Evidence for magnetic<br>polarity Chron M0r and oceanic anoxic event 1a. Special Paper of the Geological Society of America, 0,<br>, 57-78. | 0.5             | 6            |
| 137 | Revisiting Alice Boer: Site formation processes and dating issues of a supposedly preâ€Clovis site in Southeastern Brazil. Geoarchaeology - an International Journal, 2022, 37, 32-58.                                  | 0.7             | 6            |
| 138 | PM2.5 Magnetic Properties in Relation to Urban Combustion Sources in Southern West Africa.<br>Atmosphere, 2021, 12, 496.                                                                                                | 1.0             | 6            |
| 139 | Formation Processes of the Late Pleistocene Site Toca da Janela da Barra do Antonião – PiauÃ-(Brazil).<br>PaleoAmerica, 2021, 7, 260-279.                                                                               | 0.4             | 6            |
| 140 | Aeromagnetic and physical-chemical properties of some complexes from GoiÃis Alkaline Province.<br>Brazilian Journal of Geology, 2014, 44, 361-373.                                                                      | 0.3             | 6            |
| 141 | Nuclear magnetic resonance characterization of porosity-preserving microcrystalline quartz coatings in Fontainebleau sandstones. AAPG Bulletin, 2019, 103, 2117-2137.                                                   | 0.7             | 5            |
| 142 | Magnetic Properties of Ferritchromite and Crâ€Magnetite and Monitoring of Crâ€Spinels Alteration in<br>Ultramafic and Mafic Rocks. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009227.                       | 1.0             | 5            |
| 143 | Evidence for crisis-induced intermittency during geomagnetic superchron transitions. Physical Review E, 2020, 101, 022206.                                                                                              | 0.8             | 5            |
| 144 | Geomagnetic reversals at the edge of regularity. Physical Review Research, 2021, 3, .                                                                                                                                   | 1.3             | 5            |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Constraining the Cambrian drift of Gondwana with new paleomagnetic data from post-collisional plutons of the AraçuaÃ-orogen, SE Brazil. Precambrian Research, 2021, 359, 106212.                                                                   | 1.2 | 5         |
| 146 | New high-quality paleomagnetic data from the Borborema Province (NE Brazil): Refinement of the APW path of Gondwana in the Early Cambrian. Precambrian Research, 2021, 360, 106243.                                                                | 1.2 | 5         |
| 147 | Magnetic matrix effects on NMR relaxation times in sandstones: A case study in Solimões Basin.<br>Journal of Applied Geophysics, 2020, 179, 104081.                                                                                                | 0.9 | 5         |
| 148 | Nuclear Magnetic Resonance and Pore Coupling in Clay-Coated Sandstones With Anomalous Porosity<br>Preservation, Agua Grande Formation, Reconcavo Basin, Brazil. Petrophysics, 2018, 59, 136-152.                                                   | 0.2 | 5         |
| 149 | Molecular dating of the blood pigment hemocyanin provides new insight into the origin of animals.<br>Geobiology, 2022, 20, 333-345.                                                                                                                | 1.1 | 5         |
| 150 | Diverse vase-shaped microfossils within a Cryogenian glacial setting in the Urucum Formation<br>(Brazil). Precambrian Research, 2021, 367, 106470.                                                                                                 | 1.2 | 5         |
| 151 | The Earth's magnetic field prior to the Cretaceous Normal Superchron: new palaeomagnetic results from the Alto Paraguay Formation. International Geology Review, 2013, 55, 692-704.                                                                | 1.1 | 4         |
| 152 | The response of a dune succession from Lençóis Maranhenses, NE Brazil, to climate changes between<br>MIS 3 and MIS 2. Quaternary International, 2020, 537, 97-111.                                                                                 | 0.7 | 4         |
| 153 | Magnetic Mineralogy of Speleothems From Tropical-Subtropical Sites of South America. Frontiers in<br>Earth Science, 2021, 9, .                                                                                                                     | 0.8 | 4         |
| 154 | Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses. Geoscience Frontiers, 2022, 13, 101202.                                                                                    | 4.3 | 4         |
| 155 | Magnetic anisotropy of an ancient volcanic system: Flow dynamics of post-collisional Ediacaran volcanism in southernmost Brazil. Precambrian Research, 2021, 359, 106209.                                                                          | 1.2 | 4         |
| 156 | Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals. Scientific Reports, 2021, 11, 15744.                                                                   | 1.6 | 4         |
| 157 | AMS and rock magnetism in the Caviahue-Copahue Volcanic Complex (Southern Andes): Emission<br>center, flow dynamics, and implications to the emplacement of non-welded PDCs. Journal of<br>Volcanology and Geothermal Research, 2021, 416, 107283. | 0.8 | 4         |
| 158 | The Precambrian drift history and paleogeography of Congoâ^'São Francisco craton. , 2021, , 445-464.                                                                                                                                               |     | 4         |
| 159 | Imaging the roots of a post-collisional pluton: Implications for the voluminous Cambrian magmatism<br>in the AraçuaÃ-orogen (Brazil). Tectonophysics, 2021, 821, 229146.                                                                           | 0.9 | 4         |
| 160 | Stalagmite paleomagnetic record of a quiet mid-to-late Holocene field activity in central South<br>America. Nature Communications, 2022, 13, 1349.                                                                                                 | 5.8 | 4         |
| 161 | Paleomagnetic study of an historical lava flow from the Llaima volcano, Chile. Journal of South<br>American Earth Sciences, 2017, 77, 141-149.                                                                                                     | 0.6 | 3         |
| 162 | Isotope stratigraphy of Precambrian sedimentary rocks from Brazil: Keys to unlock Earth's<br>hydrosphere, biosphere, tectonic, and climate evolution. Stratigraphy & Timescales, 2019, , 73-132.                                                   | 0.2 | 3         |

| #   | Article                                                                                                                                                                                                                             | IF         | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 163 | Building an inversely zoned post-orogenic intrusion in the Neoproterozoic-Cambrian AraçuaÃ-orogen<br>(Brazil). Journal of Structural Geology, 2021, 149, 104401.                                                                    | 1.0        | 3            |
| 164 | Low paleolatitude of the CarajÃis Basin atÂâ^1⁄42.75 Ga: Paleomagnetic evidence from basaltic flows in<br>Amazonia. Precambrian Research, 2021, 365, 106411.                                                                        | 1.2        | 3            |
| 165 | Characterization of volcanic structures associated to the silicic magmatism of the Paraná-Etendeka<br>Province, in the Aparados da Serra region, southern Brazil. Anais Da Academia Brasileira De Ciencias,<br>2020, 92, e20180981. | 0.3        | 3            |
| 166 | Emplacement and deformation of the A-type Madeira granite (Amazonian Craton, Brazil). Lithos, 2017, 277, 284-301.                                                                                                                   | 0.6        | 2            |
| 167 | The Nitrogen Cycle in an Epeiric Sea in the Core of Gondwana Supercontinent: A Study on the<br>Ediacaran-Cambrian BambuÃ-Group, East-central Brazil. Frontiers in Earth Science, 2021, 9, .                                         | 0.8        | 2            |
| 168 | Sedimentary and tectonic breccias at the base of the Ediacaran Tamengo Formation (CorumbÃ; Group):<br>a comparative study. Brazilian Journal of Geology, 2022, 52, .                                                                | 0.3        | 2            |
| 169 | THE BOU AZZER AND SIRWA OPHIOLITES (ANTI-ATLAS, MOROCCO): INSIGHT INTO POLYPHASED SUBDUCTION-ACCRETION DYNAMICS DURING NEOPROTEROZOIC TIMES. , 2019, , .                                                                            |            | 1            |
| 170 | Paleomagnetismo da sucessão vulcanogênica do Grupo Surumu (Paleoproterozóico do Cráton) Tj ETQq0 0 (                                                                                                                                | ) rgBT /Ov | erlock 10 Tf |

| 171 | Preliminary data of magnetic susceptibility and geomagnetic field variations from sediment records of<br>Lagoa dos Patos, Rio Grande do Sul State, Brazil. , 2015, , . |     | 0 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 172 | Response: Commentary: Is the Neoproterozoic oxygen burst a supercontinent legacy?. Frontiers in<br>Earth Science, 2016, 4, .                                           | 0.8 | 0 |
| 173 | Editorial: Advances in Magnetism of Soils and Sediments. Frontiers in Earth Science, 2021, 9, .                                                                        | 0.8 | 0 |