
Igor V Zagaynov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/232178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of iso/aliovalent dopants in ceria solid solutions for improved CO oxidation. Molecular Catalysis, 2022, 517, 112016.	2.0	1
2	Effect of the oxidizing capacity of ceria-based support on the conversion of methane to syngas. Mendeleev Communications, 2022, 32, 129-131.	1.6	3
3	Gd-Bi-M-Ce-O (M = Cu, Zr, Ni, Co, Mn) ceria-based solid solutions for low temperature CO oxidation. Ceramics International, 2021, 47, 8142-8149.	4.8	5
4	Sm(Nd) doped ceria materials for multifunctional application. Ceramics International, 2021, 47, 22201-22208.	4.8	6
5	Active Components of Catalysts of Methane Conversion to Synthesis Gas: Brief Perspectives. Energy & Fuels, 2021, 35, 9124-9136.	5.1	10
6	Features of electrical conductivity of complex Cu-Mn-ceria-based electrolytes. Letters on Materials, 2021, 11, 152-157.	0.7	1
7	Ceria-based solid solutions for environmental application. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012098.	0.6	0
8	Multifunctional nanomaterials based on ceria solid solution. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012093.	0.6	1
9	Trimetallic NiCoM catalysts (M = Mn, Fe, Cu) for methane conversion into synthesis gas. Mendeleev Communications, 2019, 29, 22-24.	1.6	8
10	Perspective Preparation Approaches of Nanocrystalline Ceria: Review. Inorganic Materials: Applied Research, 2019, 10, 42-48.	0.5	5
11	Gd0.05Bi0.15M0.05Ce0.75O2 solid solutions for IT-SOFC electrolyte application. Letters on Materials, 2019, 9, 424-427.	0.7	3
12	Electrical properties of Cu-Mn-Zr co-doped ceria electrolytes for intermediate temperature solid oxide fuel cell application. Processing and Application of Ceramics, 2019, 13, 244-249.	0.8	7
13	M/Gd0.1Ti0.1Zr0.1Ce0.7O2 Catalysts Where M Is Pt, Pd, or Pt–Pd in CO Oxidation. Inorganic Materials: Applied Research, 2018, 9, 239-242.	0.5	1
14	Perspective intermediate temperature ceria based catalysts for CO oxidation. Applied Catalysis B: Environmental, 2018, 236, 171-175.	20.2	26
15	Investigation of structure and morphology of Cu-Mn-Zr-Ce-O solid solutions. Letters on Materials, 2018, 8, 135-139.	0.7	8
16	Perspective ceria-based solid solutions Gd x Bi 0.2â^'x Ce 0.8 O 2. Materials Letters, 2017, 203, 9-12.	2.6	24
17	Influence of the Ni/Co ratio in bimetallic NiCo catalysts on methane conversion into synthesis gas. Mendeleev Communications, 2017, 27, 509-511.	1.6	15
18	Influence of acetylaceton on mesoporous structure and catalytic activity of ceria-based solid solution. Journal of Porous Materials, 2017, 24, 1247-1251.	2.6	2

IGOR V ZAGAYNOV

#	Article	IF	CITATIONS
19	Gd–Bi–Ce–O materials as catalysts in CO oxidation. Applied Nanoscience (Switzerland), 2017, 7, 871-874.	3.1	11
20	A surface and catalytic investigation of ceria by laser desorption ionization mass spectrometry. Nanosystems: Physics, Chemistry, Mathematics, 2017, , 290-295.	0.4	1
21	Catalytic activity of CuO-Gd0.1Ti0.1Zr0.1Ce0.7O2 in CO oxidation. Journal of Chemical Sciences, 2016, 128, 861-865.	1.5	3
22	High-temperature electrical conductivity of Gd x Ti y Zr z Ce1–x–y–z O2 solid solutions. Inorganic Materials: Applied Research, 2016, 7, 756-759.	0.5	1
23	Ni(Co)–Gd0.1Ti0.1Zr0.1Ce0.7O2 mesoporous materials in partial oxidation and dry reforming of methane into synthesis gas. Chemical Engineering Journal, 2016, 290, 193-200.	12.7	39
24	Gd Zr Ti Ce1–––O2 mesoporous catalysts for oxidation reactions. Surface Science, 2015, 642, L11-L15.	1.9	10
25	Sonochemical synthesis of mesoporous Gd Zr Ti Ce1â~––O2 solid solution. Ceramics International, 2015, 41, 8730-8734.	4.8	10
26	Mesoporous nanoscale ceria: synthesis from cerium (III) acetylacetonate and mechanism. Journal of Sol-Gel Science and Technology, 2015, 74, 103-108.	2.4	6
27	Synthesis of mesoporous ceria-based nanopowders for functional materials application. Materials Letters, 2015, 139, 237-240.	2.6	9
28	Catalytic activity of CuO–CeO2 in oxidation of CO high content gas mixture. Materials Research Bulletin, 2015, 61, 36-39.	5.2	8
29	Formation of mesoporous nanocrystalline ceria from cerium nitrate, acetate or acetylacetonate. Applied Nanoscience (Switzerland), 2014, 4, 339-345.	3.1	21
30	CuO–CeO2 composites: Synthesis from mixed sols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 159-164.	4.7	10
31	Nanoscale ceria for new functional materials. Journal of Physics: Conference Series, 2012, 345, 012022.	0.4	2
32	Wet-chemistry processing of powdery raw material for high-tech ceramics. Nanoscale Research Letters, 2012, 7, 58.	5.7	15