
Tarek Galal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2321181/publications.pdf Version: 2024-02-01

TADER CALAL

#	Article	IF	CITATIONS
1	Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 2015, 48, 244-251.	6.3	178
2	Bioaccumulation and rhizofiltration potential of <i>Pistia stratiotes</i> L. for mitigating water pollution in the Egyptian wetlands. International Journal of Phytoremediation, 2018, 20, 440-447.	3.1	76
3	Floristic composition and vegetation analysis in Hail region north of central Saudi Arabia. Saudi Journal of Biological Sciences, 2010, 17, 119-128.	3.8	62
4	Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment. Environmental Science and Pollution Research, 2020, 27, 12138-12151.	5.3	61
5	The biology of Calotropis procera (Aiton) W.T Trees - Structure and Function, 2015, 29, 311-320.	1.9	56
6	Phytostabilization of heavy metals by the emergent macrophyte <i>Vossia cuspidata</i> (Roxb.) Griff.: A phytoremediation, 2017, 19, 992-999.	3.1	51
7	Health risk assessment and growth characteristics of wheat and maize crops irrigated with contaminated wastewater. Environmental Monitoring and Assessment, 2017, 189, 535.	2.7	47
8	The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environmental Monitoring and Assessment, 2015, 187, 701.	2.7	39
9	Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Environmental Monitoring and Assessment, 2016, 188, 434.	2.7	31
10	Growth and nutrients accumulation potentials of giant reed (<i>Arundo donax</i> L.) in different habitats in Egypt. International Journal of Phytoremediation, 2016, 18, 1221-1230.	3.1	30
11	Regression models for monitoring trace metal accumulations by Faba sativa Bernh. plants grown in soils amended with different rates of sewage sludge. Scientific Reports, 2019, 9, 5443.	3.3	30
12	Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Environmental Science and Pollution Research, 2017, 24, 21636-21648.	5.3	29
13	Sewage Sludge Application Enhances the Growth of Corchorus olitorius Plants and Provides a Sustainable Practice for Nutrient Recirculation in Agricultural Soils. Journal of Soil Science and Plant Nutrition, 2020, 20, 149-159.	3.4	28
14	Impact of nutrients and heavy metals capture by weeds on the growth and production of rice (Oryza) Tj ETQq0 C) 0 rgBT /0	verlock 10 Tf
15	Heavy metals uptake by the global economic crop (Pisum sativum L.) grown in contaminated soils and its associated health risks. PLoS ONE, 2021, 16, e0252229.	2.5	26
16	Evaluation of the invasive macrophyte Myriophyllum spicatum L. as a bioaccumulator for heavy metals in some watercourses of Egypt. Ecological Indicators, 2014, 41, 209-214.	6.3	25
17	Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization. Environmental Science and Pollution Research, 2018, 25, 4214-4222.	5.3	23

18	Common reed (Phragmites australis (Cav.) Trin. ex Steudel) as a candidate for predicting heavy metal contamination in Lake Burullus, Egypt: A biomonitoring approach. Ecological Engineering, 2020, 148, 105787.	3.6	2:	2
----	--	-----	----	---

TAREK GALAL

#	Article	IF	CITATIONS
19	Biomonitoring potential of the native aquatic plant Typha domingensis by predicting trace metals accumulation in the Egyptian Lake Burullus. Science of the Total Environment, 2020, 714, 136603.	8.0	22
20	Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2020, 15, 205-217.	1.4	21
21	Prediction models for evaluating the heavy metal uptake by spinach (<i>Spinacia oleracea</i> L.) from soil amended with sewage sludge. International Journal of Phytoremediation, 2018, 20, 1418-1426.	3.1	20
22	A sustainable food security approach: Controlled land application of sewage sludge recirculates nutrients to agricultural soils and enhances crop productivity. Food and Energy Security, 2020, 9, e197.	4.3	20
23	Biomass, nutrients and nutritive value of Persicaria salicifolia Willd. in the water courses of Nile Delta, Egypt. Rendiconti Lincei, 2014, 25, 167-179.	2.2	18
24	Prediction models for evaluating heavy metal uptake by <i>Pisum sativum</i> L. in soil amended with sewage sludge. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 151-160.	1.7	18
25	Heavy Metal Bioaccumulation, Growth Characteristics, and Yield of Pisum sativum L. Grown in Agricultural Soil-Sewage Sludge Mixtures. Plants, 2020, 9, 1300.	3.5	17
26	Human health risks from consuming cabbage (<i>Brassica oleracea</i> L. var. <i>capitata</i>) grown on wastewater irrigated soil. International Journal of Phytoremediation, 2018, 20, 1007-1016.	3.1	16
27	Evaluation of the Phytochemical and Pharmacological Potential of Taif's Rose (Rosa damascena Mill) Tj ETQq1	1.0.7843 2.4	814 rgBT /O
28	Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte <i>Ludwigia stolonifera</i> (Guill. & Perr.) P.H. Raven. International Journal of Phytoremediation, 2020, 22, 373-382.	3.1	15
29	Size structure and dynamics of some woody perennials along elevation gradient in Wadi Gimal, Red Sea coast of Egypt. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 638-645.	1.2	13
30	Population dynamics of Pistia stratiotes L Rendiconti Lincei, 2019, 30, 367-378.	2.2	13
31	Phenology, biomass and nutrients of Imperata cylindrica and Desmostachya bipinnata along the water courses in Nile Delta, Egypt. Rendiconti Lincei, 2016, 27, 215-228.	2.2	12
32	Prediction models for monitoring heavy-metal accumulation by wheat (<i>Triticum aestivum</i> L.) plants grown in sewage sludge amended soil. International Journal of Phytoremediation, 2020, 22, 1000-1008.	3.1	12
33	Uptake Prediction of Ten Heavy Metals by Eruca sativa Mill. Cultivated in Soils Amended with Sewage Sludge. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 134-143.	2.7	11
34	Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint (<i>Mentha) Tj ETQq0 0 1-11.</i>	0 rgBT /0 3.1	verlock 10 T 11
35	Seasonal potential of <i>Phragmites australis</i> in nutrient removal to eliminate the eutrophication in Lake Burullus, Egypt. Journal of Freshwater Ecology, 2020, 35, 135-155.	1.2	11
36	Prediction models based on soil properties for evaluating the heavy metal uptake into <i>Hordeum vulgare</i> L. grown in agricultural soils amended with different rates of sewage sludge. International Journal of Environmental Health Research, 2022, 32, 106-120.	2.7	11

TAREK GALAL

#	Article	IF	CITATIONS
37	Evaluation of the Nutrient Status of Some Hydrophytes in the Water Courses of Nile Delta, Egypt. Journal of Botany, 2009, 2009, 1-11.	1.2	10
38	Plant diversity and community structure of <scp>W</scp> adi <scp>G</scp> imal protected area, <scp>R</scp> ed <scp>S</scp> ea <scp>C</scp> oast of <scp>E</scp> gypt. African Journal of Ecology, 2012, 50, 266-276.	0.9	10
39	Morphological variations, biomass and ion accumulation of the aboveground shoots of Desmostachya bipinnata (L.) Stapf. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 556-561.	1.2	10
40	Effect of urban habitat heterogeneity on functional traits plasticity of the invasive species Calotropis procera (Aiton) W.T. Aiton. Rendiconti Lincei, 2015, 26, 193-201.	2.2	10
41	Heavy metals uptake and its impact on the growth dynamics of the riparian shrub Ricinus communis L. along Egyptian heterogenic habitats. Environmental Science and Pollution Research, 2021, 28, 37158-37171.	5.3	10
42	Vegetation zonation along the desert-wetland ecosystem of Taif Highland, Saudi Arabia. Saudi Journal of Biological Sciences, 2021, 28, 3374-3383.	3.8	10
43	Nutrients and heavy metals accumulation by the giant milkweed Calotropis procera (Aiton) W.T. Aiton in urbanized areas, Egypt. Rendiconti Lincei, 2016, 27, 241-250.	2.2	9
44	Modeling the growth dynamics of Pistia stratiotes L. populations along the water courses of south Nile Delta, Egypt. Rendiconti Lincei, 2016, 27, 375-382.	2.2	9
45	Phenology, biomass and reproductive characteristics of Calotropis procera (Aiton) W.T. Aiton in South Cairo, Egypt. Rendiconti Lincei, 2016, 27, 197-204.	2.2	9
46	The role of Cyperus alopecuroides Rottb. sedge in monitoring water pollution in contaminated wetlands in Egypt: a phytoremediation approach. Environmental Science and Pollution Research, 2021, 28, 23005-23016.	5.3	9
47	Comparison of photosynthetic activity and heat tolerance between near isogenic lines of wheat with different photosynthetic rates. PLoS ONE, 2021, 16, e0255896.	2.5	9
48	Coastal Lakes as Hot Spots for Plant Diversity in Egypt. Handbook of Environmental Chemistry, 2017, , 129-146.	0.4	7
49	Chemical Characterization of Taif Rose (Rosa damascena Mill var. trigentipetala) Waste Methanolic Extract and Its Hepatoprotective and Antioxidant Effects against Cadmium Chloride (CdCl2)-Induced Hepatotoxicity and Potential Anticancer Activities against Liver Cancer Cells (HepG2). Crystals, 2022, 12. 460.	2.2	7
50	Factors affecting the distribution and associated species of <i><scp>M</scp>alva parviflora</i> in the <scp>N</scp> ile <scp>D</scp> elta, <scp>E</scp> gypt. Weed Biology and Management, 2015, 15, 42-52.	1.4	6
51	Hazards assessment of the intake of trace metals by common mallow (Malva parviflora K.) growing in polluted soils. International Journal of Phytoremediation, 2019, 21, 1397-1406.	3.1	6
52	Temporal Potential of Phragmites australis as a Phytoremediator to Remove Ni and Pb from Water and Sediment in Lake Burullus, Egypt. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 516-527.	2.7	6
53	Accumulation and translocation of eight trace metals by the different tissues of Abelmoschus esculentus Moench. irrigated with untreated wastewater. Environmental Science and Pollution Research, 2022, 29, 21221-21231.	5.3	6
54	Seasonal Variation in the Secondary Metabolites and Antimicrobial Activity of Plantago major L. from Egyptian Heterogenic Habitats. Egyptian Journal of Botany, 2022, 62, 255-273.	0.2	6

#	Article	IF	CITATIONS
55	Uptake prediction of ten heavy metals by Corchorus olitorius L. cultivated in soil mixed with sewage sludge. Food and Energy Security, 2020, 9, e203.	4.3	5

Evaluation of the nutrient status and forage quality of the hippo grass ($\langle i \rangle$ Vossia cuspidata $\langle i \rangle$) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 70 1.2 Vossia) Tj ETQq0 0 rgBT (Overlock 10 Tf 50 70 1.2 Vossia) Tj ETQq0 0 rgBT (

57	Nutrient sequestration potential of water primrose Ludwigia stolinefera (Guill. & Perr.) P.H. Raven: A strategy for restoring wetland eutrophication. Saudi Journal of Biological Sciences, 2021, 28, 2438-2446.	3.8	5
58	Biosynthesis of silver nanoparticles by Nocardiopsis sp.â€MW279108 and its antimicrobial activity. Journal of Basic Microbiology, 2021, 61, 993-1001.	3.3	5
59	EVALUATING THE UPTAKE OF TEN HEAVY METALS BY KIDNEY BEAN (PHASEOLUS VULGARIS L.) GROWN IN A SOIL-SLUDGE MIXTURE USING A REGRESSION MODEL. Applied Ecology and Environmental Research, 2020, 18, 7021-7039.	0.5	5
60	Impact of waste water discharge on the plant communities and size structure of Wadi Elâ€Shees, Alâ€Jabal Alâ€Akhdar, Libya. Feddes Repertorium, 2014, 125, 1-13.	0.5	4
61	Polymorphism in Calotropis procera: variation of metabolites in populations from different phytogeographical regions of Egypt. Rendiconti Lincei, 2014, 25, 461-469.	2.2	4
62	INFLUENCES OF SEWAGE SLUDGE-AMENDED SOIL ON HEAVY METAL ACCUMULATION, GROWTH AND YIELD OF ROCKET PLANT (ERUCA SATIVA). Applied Ecology and Environmental Research, 2020, 18, 3027-3040.	0.5	4
63	Habitat and vegetation of Lake Edku, Egypt. Taeckholmia, 2005, 25, 61-90.	0.3	4
64	Vegetation–environment relationship and floristic diversity of Wadi Al-Sharaea, Makkah Province, Saudi Arabia. Rendiconti Lincei, 2022, 33, 169-184.	2.2	4
65	Nutrient Remediation Efficiency of the Sedge Plant (Cyperus alopecuroides Rottb.) to Restore Eutrophic Freshwater Ecosystems. Sustainability, 2022, 14, 2823.	3.2	4
66	Planned Application of Sewage Sludge Recirculates Nutrients to Agricultural Soil and Improves Growth of Okra (Abelmoschus esculentus (L.) Moench) Plants. Sustainability, 2022, 14, 740.	3.2	3
67	Safety assessment and sustainability of consuming eggplant (Solanum melongena L.) grown in wastewater-contaminated agricultural soils. Scientific Reports, 2022, 12, .	3.3	3
68	Demography and size structure of the giant milkweed shrub Calotropis procera (Aiton) W.T. Aiton. Rendiconti Lincei, 2016, 27, 341-349.	2.2	2
69	Evaluation of newly reclaimed areas in Saudi Arabia for cultivation of the leguminous crop Phaseolus vulgaris under sewage sludge amendment. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2021, 16, 153-169.	1.4	2
70	Uptake Prediction of Eight Potentially Toxic Elements by Pistia stratiotes L. Grown in the Al-Sero Drain (South Nile Delta, Egypt): A Biomonitoring Approach. Sustainability, 2021, 13, 5276.	3.2	2
71	Using Remote-sensing Technique to Assess the Role of Common Reed [Phragmites australis (CAV.) Trin. Ex. Steud] in Restoring Eutrophication in Idku Wetland in Egypt. Egyptian Journal of Botany, 2022, 62, 575-593.	0.2	2
72	Seasonal potential of Pistia stratiotes in nutrient removal to eliminate eutrophication in Al-Sero Drain (South Nile Delta, Egypt). Journal of Freshwater Ecology, 2021, 36, 173-187.	1.2	1

#	Article	IF	CITATIONS
73	Phytosociology of rainfed barely along the western Mediterranean Coast, Egypt. Taeckholmia, 2019, 39, 18-33.	0.3	1
74	EFFECTS OF SEWAGE SLUDGE APPLICATIONS TO AGRICULTURAL SOIL ON THE BIOCHEMICAL PARAMETERS OF FABA BEAN (FABA SATIVA BERNH.), WHEAT (TRITICUM AESTIVUM L.), SPINACH (SPINACIA OLERACEA L.) AND CUCUMBER (CUCUMIS SATIVUS L.) CROPS. Applied Ecology and Environmental Research, 2020, 18, 6457-6467.	0.5	1
75	Effect of Pollution Type on the Phytoplankton Community Structure in Lake Mariut, Egypt. Egyptian Journal of Botany, 2018, .	0.2	0