Seonah Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2320994/publications.pdf

Version: 2024-02-01

257450 233421 2,286 44 24 45 citations h-index g-index papers 47 47 47 3214 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Computational Study of Bond Dissociation Enthalpies for a Large Range of Native and Modified Lignins. Journal of Physical Chemistry Letters, 2011, 2, 2846-2852.	4.6	318
2	A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments. ACS Sustainable Chemistry and Engineering, 2014, 2, 472-485.	6.7	317
3	Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 149-154.	7.1	210
4	Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 2018, 8, 770-784.	11,2	161
5	Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nature Communications, 2020, 11, 2328.	12.8	128
6	Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale. Combustion and Flame, 2018, 190, 349-364.	5 . 2	122
7	Structural and Electronic Snapshots during the Transition from a Cu(II) to Cu(I) Metal Center of a Lytic Polysaccharide Monooxygenase by X-ray Photoreduction. Journal of Biological Chemistry, 2014, 289, 18782-18792.	3.4	99
8	Through-Space Ultrafast Photoinduced Electron Transfer Dynamics of a C ₇₀ -Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium. Journal of the American Chemical Society, 2017, 139, 4286-4289.	13.7	58
9	Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading. Green Chemistry, 2018, 20, 567-582.	9.0	55
10	Quantum chemical calculations for over 200,000 organic radical species and 40,000 associated closed-shell molecules. Scientific Data, 2020, 7, 244.	5. 3	49
11	Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties. Accounts of Chemical Research, 2021, 54, 827-836.	15.6	47
12	Small ester combustion chemistry: Computational kinetics and experimental study of methyl acetate and ethyl acetate. Proceedings of the Combustion Institute, 2019, 37, 419-428.	3.9	45
13	Ethanol Dehydration in HZSM-5 Studied by Density Functional Theory: Evidence for a Concerted Process. Journal of Physical Chemistry A, 2015, 119, 3604-3614.	2.5	44
14	Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite. Catalysis Today, 2018, 312, 73-81.	4.4	44
15	A Quantitative Model for the Prediction of Sooting Tendency from Molecular Structure. Energy & Samp; Fuels, 2017, 31, 9983-9990.	5.1	42
16	Prediction of Hydroxymethylfurfural Yield in Glucose Conversion through Investigation of Lewis Acid and Organic Solvent Effects. ACS Catalysis, 2020, 10, 14707-14721.	11.2	41
17	Sooting tendencies of co-optima test gasolines and their surrogates. Proceedings of the Combustion Institute, 2019, 37, 961-968.	3.9	39
18	Performance-advantaged ether diesel bioblendstock production by a priori design. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26421-26430.	7.1	39

#	Article	IF	CITATIONS
19	In-situ hydrogenation of bio-oil/bio-oil phenolic compounds with secondary alcohols over a synthesized mesoporous Ni/CeO2 catalyst. Chemical Engineering Journal, 2020, 382, 122912.	12.7	38
20	Crystal structure of glycoside hydrolase family 127 \hat{l}^2 -l-arabinofuranosidase from Bifidobacterium longum. Biochemical and Biophysical Research Communications, 2014, 447, 32-37.	2.1	35
21	Structural and molecular dynamics studies of a C1â€oxidizing lytic polysaccharide monooxygenase from <i>Heterobasidion irregulare</i> reveal amino acids important for substrate recognition. FEBS Journal, 2018, 285, 2225-2242.	4.7	35
22	Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e297.	4.1	30
23	Ga/ZSM-5 catalyst improves hydrocarbon yields and increases alkene selectivity during catalytic fast pyrolysis of biomass with co-fed hydrogen. Green Chemistry, 2020, 22, 2403-2418.	9.0	26
24	Diffusion of Biomass Pyrolysis Products in H-ZSM-5 by Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 500-510.	3.1	25
25	Tailoring diesel bioblendstock from integrated catalytic upgrading of carboxylic acids: a "fuel property first―approach. Green Chemistry, 2019, 21, 5813-5827.	9.0	25
26	A perspective on biomass-derived biofuels: From catalyst design principles to fuel properties. Journal of Hazardous Materials, 2020, 400, 123198.	12.4	23
27	Furan Production from Glycoaldehyde over HZSM-5. ACS Sustainable Chemistry and Engineering, 2016, 4, 2615-2623.	6.7	19
28	Understanding Trends in Autoignition of Biofuels: Homologous Series of Oxygenated C5 Molecules. Journal of Physical Chemistry A, 2017, 121, 5475-5486.	2.5	16
29	Towards quantitative prediction of ignition-delay-time sensitivity on fuel-to-air equivalence ratio. Combustion and Flame, 2020, 214, 103-115.	5.2	16
30	Carbocation Stability in H-ZSM5 at High Temperature. Journal of Physical Chemistry A, 2015, 119, 11397-11405.	2.5	14
31	Isotopic Studies for Tracking Biogenic Carbon during Co-processing of Biomass and Vacuum Gas Oil. ACS Sustainable Chemistry and Engineering, 2020, 8, 2652-2664.	6.7	14
32	Exploring Low-Temperature Dehydrogenation at Ionic Cu Sites in Beta Zeolite To Enable Alkane Recycle in Dimethyl Ether Homologation. ACS Catalysis, 2017, 7, 3662-3667.	11.2	13
33	Experimental and theoretical insight into the soot tendencies of the methylcyclohexene isomers. Proceedings of the Combustion Institute, 2019, 37, 1083-1090.	3.9	13
34	Chemical kinetic basis of synergistic blending for research octane number. Fuel, 2022, 307, 121865.	6.4	13
35	Theoretical Determination of Size Effects in Zeolite-Catalyzed Alcohol Dehydration. Catalysts, 2019, 9, 700.	3.5	11
36	Reactive Molecular Dynamics Simulations and Quantum Chemistry Calculations To Investigate Soot-Relevant Reaction Pathways for Hexylamine Isomers. Journal of Physical Chemistry A, 2020, 124, 4290-4304.	2.5	11

3

#	Article	lF	CITATION
37	Investigation of structural effects of aromatic compounds on sooting tendency with mechanistic insight into ethylphenol isomers. Proceedings of the Combustion Institute, 2021, 38, 1143-1151.	3.9	10
38	Different Behaviors of a Substrate in P450 Decarboxylase and Hydroxylase Reveal Reactivity-Enabling Actors. Scientific Reports, 2018, 8, 12826.	3.3	9
39	Elucidating the chemical pathways responsible for the sooting tendency of 1 and 2-phenylethanol. Proceedings of the Combustion Institute, 2021, 38, 1327-1334.	3.9	7
40	Understanding how chemical structure affects ignition-delay-time <mml:math altimg="si2.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ie</mml:mi></mml:math> -sensitivity. Combustion and Flame, 2021, 225, 377-387.	5.2	7
41	Toward rational design of supported vanadia catalysts of lignin conversion to phenol. Chemical Engineering Journal, 2022, 446, 136965.	12.7	4
42	Predicting Catalytic Pyrolysis Aromatic Selectivity from Pyrolysis Vapor Composition Using Mass Spectra Coupled with Statistical Analysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 234-244.	6.7	3
43	Connecting cation site location to alkane dehydrogenation activity in Ni/BEA catalysts. Journal of Catalysis, 2022, 413, 264-273.	6.2	3
44	Development of a Data-Derived Sooting Index Including Oxygen-Containing Fuel Components. Energy & Lamp; Fuels, 2019, 33, 10290-10296.	5.1	2