Michael Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2320548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging roles for IL-11 in inflammatory diseases. Cytokine, 2022, 149, 155750.	1.4	31
2	Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science, 2022, 376, 1074-1079.	6.0	25
3	Cytokine Receptors and their Ligands. , 2022, , .		1
4	The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends. Journal of Molecular Biology, 2022, 434, 167711.	2.0	2
5	Mechanism of NanR gene repression and allosteric induction of bacterial sialic acid metabolism. Nature Communications, 2021, 12, 1988.	5.8	16
6	Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2021, 148, 585-598.	1.5	20
7	Design of proteasome inhibitors with oral efficacy in vivo against <i>Plasmodium falciparum</i> and selectivity over the human proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
8	Structural Insights into the Unique Modes of Relaxin-Binding and Tethered-Agonist Mediated Activation of RXFP1 and RXFP2. Journal of Molecular Biology, 2021, 433, 167217.	2.0	6
9	Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Frontiers in Immunology, 2020, 11, 1424.	2.2	60
10	N- and C-terminal regions of αB-crystallin and Hsp27 mediate inhibition of amyloid nucleation, fibril binding, and fibril disaggregation. Journal of Biological Chemistry, 2020, 295, 9838-9854.	1.6	22
11	The structure of the extracellular domains of human interleukin 11î± receptor reveals mechanisms of cytokine engagement. Journal of Biological Chemistry, 2020, 295, 8285-8301.	1.6	33
12	Loss of NFKB1 Results in Expression of Tumor Necrosis Factor and Activation of Signal Transducer and Activator of Transcription 1 to Promote Gastric Tumorigenesis in Mice. Gastroenterology, 2020, 159, 1444-1458.e15.	0.6	18
13	The basis for non-canonical ROK family function in the N-acetylmannosamine kinase from the pathogen Staphylococcus aureus. Journal of Biological Chemistry, 2020, 295, 3301-3315.	1.6	13
14	Probing the correlation between ligand efficacy and conformational diversity at the α1A-adrenoreceptor reveals allosteric coupling of its microswitches. Journal of Biological Chemistry, 2020, 295, 7404-7417.	1.6	25
15	Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clinical Science, 2020, 134, 2091-2115.	1.8	59
16	The structure of the PA28–20S proteasome complex from Plasmodium falciparum and implications for proteostasis. Nature Microbiology, 2019, 4, 1990-2000.	5.9	31
17	Structure and Function of the Proteasome Activator PA28 of the Malaria Parasite Plasmodium falciparum. Microscopy and Microanalysis, 2019, 25, 1324-1325.	0.2	0
18	Structural Elucidation of Viral Antagonism of Innate Immunity at the STAT1 Interface. Cell Reports, 2019, 29, 1934-1945.e8.	2.9	30

#	Article	IF	CITATIONS
19	Repurposing the selective estrogen receptor modulator <i>bazedoxifene</i> to suppress gastrointestinal cancer growth. EMBO Molecular Medicine, 2019, 11, .	3.3	32
20	Structure–function analyses of two plant meso-diaminopimelate decarboxylase isoforms reveal that active-site gating provides stereochemical control. Journal of Biological Chemistry, 2019, 294, 8505-8515.	1.6	6
21	Lipid-apolipoprotein interactions in amyloid fibril formation and relevance to atherosclerosis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 502-507.	1.1	6
22	The brace helices of MLKL mediate interdomain communication and oligomerisation to regulate cell death by necroptosis. Cell Death and Differentiation, 2018, 25, 1567-1580.	5.0	66
23	A Novel Ultra-Stable, Monomeric Green Fluorescent Protein For Direct Volumetric Imaging of Whole Organs Using CLARITY. Scientific Reports, 2018, 8, 667.	1.6	66
24	Identification of a second binding site on the TRIM25 B30.2 domain. Biochemical Journal, 2018, 475, 429-440.	1.7	11
25	Transferrin receptor 1 is a reticulocyte-specific receptor for <i>Plasmodium vivax</i> . Science, 2018, 359, 48-55.	6.0	158
26	Loss of NF-κB1 Causes Gastric Cancer with Aberrant Inflammation and Expression of Immune Checkpoint Regulators in a STAT-1-Dependent Manner. Immunity, 2018, 48, 570-583.e8.	6.6	61
27	Unravelling the Carbohydrateâ€Binding Preferences of the Carbohydrateâ€Binding Modules of AMPâ€Activated Protein Kinase. ChemBioChem, 2018, 19, 229-238.	1.3	3
28	Crystal structure of TcpK in complex with oriT DNA of the antibiotic resistance plasmid pCW3. Nature Communications, 2018, 9, 3732.	5.8	18
29	Substrate Locking Promotes Dimer-Dimer Docking of an Enzyme Antibiotic Target. Structure, 2018, 26, 948-959.e5.	1.6	5
30	Polymorphism in diseaseâ€related apolipoprotein C―II amyloid fibrils: a structural model for rodâ€like fibrils. FEBS Journal, 2018, 285, 2799-2812.	2.2	6
31	Cryo-EM structure of an essential Plasmodium vivax invasion complex. Nature, 2018, 559, 135-139.	13.7	43
32	EPO does not promote interaction between the erythropoietin and beta-common receptors. Scientific Reports, 2018, 8, 12457.	1.6	21
33	The Roc OR tandem domain of leucineâ€rich repeat kinase 2 forms dimers and exhibits conventional Rasâ€like GTPase properties. Journal of Neurochemistry, 2018, 147, 409-428.	2.1	11
34	Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis. Nature Communications, 2018, 9, 2422.	5.8	154
35	Intra- and Intersubunit Ion-Pair Interactions Determine the Ability of Apolipoprotein C-II Mutants To Form Hybrid Amyloid Fibrils. Biochemistry, 2017, 56, 1757-1767.	1.2	5
36	Structure of SgK223 pseudokinase reveals novel mechanisms of homotypic and heterotypic association. Nature Communications, 2017, 8, 1157.	5.8	40

#	Article	IF	CITATIONS
37	Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Communication and Signaling, 2017, 15, 29.	2.7	10
38	Selective inhibition of apicoplast tryptophanyl-tRNA synthetase causes delayed death in Plasmodium falciparum. Scientific Reports, 2016, 6, 27531.	1.6	34
39	Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1. Biochemical Journal, 2016, 473, 3081-3098.	1.7	27
40	Apolipoprotein C-II Adopts Distinct Structures in Complex with Micellar and Submicellar Forms of the Amyloid-Inhibiting Lipid-Mimetic Dodecylphosphocholine. Biophysical Journal, 2016, 110, 85-94.	0.2	4
41	Small Heat-shock Proteins Prevent α-Synuclein Aggregation via Transient Interactions and Their Efficacy Is Affected by the Rate of Aggregation. Journal of Biological Chemistry, 2016, 291, 22618-22629.	1.6	96
42	Biochemical and Structural Insights into Doublecortin-like Kinase Domain 1. Structure, 2016, 24, 1550-1561.	1.6	56
43	Solution Conditions Affect the Ability of the K30D Mutation To Prevent Amyloid Fibril Formation by Apolipoprotein C-II: Insights from Experiments and Theoretical Simulations. Biochemistry, 2016, 55, 3815-3824.	1.2	5
44	Grappling with anisotropic data, pseudo-merohedral twinning and pseudo-translational noncrystallographic symmetry: a case study involving pyruvate kinase. Acta Crystallographica Section D: Structural Biology, 2016, 72, 512-519.	1.1	10
45	A repeat sequence domain of the ringâ€exported proteinâ€1 of <scp><i>P</i></scp> <i>lasmodium falciparum</i> controls export machinery architecture and virulence protein trafficking. Molecular Microbiology, 2015, 98, 1101-1114.	1.2	20
46	Chameleon â€~aggregation-prone' segments of apoA-I: A model of amyloid fibrils formed in apoA-I amyloidosis. International Journal of Biological Macromolecules, 2015, 79, 711-718.	3.6	29
47	Polyalanine expansions drive a shift into α-helical clusters without amyloid-fibril formation. Nature Structural and Molecular Biology, 2015, 22, 1008-1015.	3.6	42
48	Charge and Charge-Pair Mutations Alter the Rate of Assembly and Structural Properties of Apolipoprotein C-II Amyloid Fibrils. Biochemistry, 2015, 54, 1421-1428.	1.2	13
49	Notch ligand delta-like1: X-ray crystal structure and binding affinity. Biochemical Journal, 2015, 468, 159-166.	1.7	32
50	Hydrogen/Deuterium Exchange and Molecular Dynamics Analysis of Amyloid Fibrils Formed by a D69K Charge-Pair Mutant of Human Apolipoprotein C-II. Biochemistry, 2015, 54, 4805-4814.	1.2	15
51	Fluphenazine·HCl and Epigallocatechin Gallate Modulate the Rate of Formation and Structural Properties of Apolipoprotein C-II Amyloid Fibrils. Biochemistry, 2015, 54, 3831-3838.	1.2	8
52	The Role of Lipid in Misfolding and Amyloid Fibril Formation by Apolipoprotein C-II. Advances in Experimental Medicine and Biology, 2015, 855, 157-174.	0.8	7
53	Determinants of oligosaccharide specificity of the carbohydrate-binding modules of AMP-activated protein kinase. Biochemical Journal, 2015, 468, 245-257.	1.7	26
54	Sedimentation Velocity Analysis of the Size Distribution of Amyloid Oligomers and Fibrils. Methods in Enzymology, 2015, 562, 241-256.	0.4	10

#	Article	IF	CITATIONS
55	Imaging the Morphology and Structure of Apolipoprotein Amyloid Fibrils. , 2014, , 247-254.		Ο
56	Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of <i>N</i> -acetylmannosamine-6-phosphate 2-epimerase from methicillin-resistant <i>Staphylococcus aureus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 650-655.	0.4	8
5 7	Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of <i>N</i> -acetylmannosamine kinase from methicillin-resistant <i>Staphylococcus aureus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 643-649.	0.4	5
58	The purification, crystallization and preliminary X-ray diffraction analysis of two isoforms ofmeso-diaminopimelate decarboxylase fromArabidopsis thaliana. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 663-668.	0.4	2
59	The structure of human interleukin-11 reveals receptor-binding site features and structural differences from interleukin-6. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2277-2285.	2.5	47
60	Avoiding the oligomeric state: αBâ€crystallin inhibits fragmentation and induces dissociation of apolipoprotein Câ€II amyloid fibrils. FASEB Journal, 2013, 27, 1214-1222.	0.2	47
61	Small Oligomers of Ribulose-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Are Required for Biological Activity. Journal of Biological Chemistry, 2013, 288, 20607-20615.	1.6	30
62	Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies ofN-acetylneuraminate lyase from methicillin-resistantStaphylococcus aureus. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 306-312.	0.7	11
63	Simultaneous Binding of the Anti-Cancer IgM Monoclonal Antibody PAT-SM6 to Low Density Lipoproteins and GRP78. PLoS ONE, 2013, 8, e61239.	1.1	6
64	From Knock-Out Phenotype to Three-Dimensional Structure of a Promising Antibiotic Target from Streptococcus pneumoniae. PLoS ONE, 2013, 8, e83419.	1.1	22
65	Structural and Dynamic Requirements for Optimal Activity of the Essential Bacterial Enzyme Dihydrodipicolinate Synthase. PLoS Computational Biology, 2012, 8, e1002537.	1.5	16
66	The Relationship between Oligomeric State and Protein Function. Advances in Experimental Medicine and Biology, 2012, 747, 74-90.	0.8	26
67	A Cyclic Peptide Inhibitor of ApoC-II Peptide Fibril Formation: Mechanistic Insight from NMR and Molecular Dynamics Analysis. Journal of Molecular Biology, 2012, 416, 642-655.	2.0	16
68	An Equilibrium Model for Linear and Closed-Loop Amyloid Fibril Formation. Journal of Molecular Biology, 2012, 421, 364-377.	2.0	19
69	Characterisation of the First Enzymes Committed to Lysine Biosynthesis in Arabidopsis thaliana. PLoS ONE, 2012, 7, e40318.	1.1	45
70	Identification of an amyloid fibril forming peptide comprising residues 46–59 of apolipoprotein Aâ€ I. FEBS Letters, 2012, 586, 1754-1758.	1.3	25
71	A highly conserved tryptophan in the Nâ€ŧerminal variable domain regulates disulfide bond formation and oligomeric assembly of adiponectin. FEBS Journal, 2012, 279, 2495-2507.	2.2	10
72	NBD-Labeled Phospholipid Accelerates Apolipoprotein C-II Amyloid Fibril Formation but Is Not Incorporated into Mature Fibrils. Biochemistry, 2011, 50, 9579-9586.	1.2	13

#	Article	IF	CITATIONS
73	Shear Flow Induced Changes in Apolipoprotein C-II Conformation and Amyloid Fibril Formation. Biochemistry, 2011, 50, 4046-4057.	1.2	18
74	Diagnostics for Amyloid Fibril Formation: Where to Begin?. Methods in Molecular Biology, 2011, 752, 121-136.	0.4	8
75	A tetrameric structure is not essential for activity in dihydrodipicolinate synthase (DHDPS) from Mycobacterium tuberculosis. Archives of Biochemistry and Biophysics, 2011, 512, 154-159.	1.4	16
76	A Structural Model for Apolipoprotein C-II Amyloid Fibrils: Experimental Characterization and Molecular Dynamics Simulations. Journal of Molecular Biology, 2011, 405, 1246-1266.	2.0	45
77	High-Affinity Amphipathic Modulators of Amyloid Fibril Nucleation and Elongation. Journal of Molecular Biology, 2011, 406, 416-429.	2.0	30
78	Sedimentation velocity analysis of amyloid oligomers and fibrils using fluorescence detection. Methods, 2011, 54, 67-75.	1.9	24
79	Apolipoproteins and amyloid fibril formation in atherosclerosis. Protein and Cell, 2011, 2, 116-127.	4.8	57
80	Crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase 2 fromArabidopsis thaliana. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1386-1390.	0.7	2
81	Visualization of polymorphism in apolipoprotein C-II amyloid fibrils. Journal of Biochemistry, 2011, 149, 67-74.	0.9	5
82	Thioflavin T fluorescence in human serum: Correlations with vascular health and cardiovascular risk factors. Clinical Biochemistry, 2010, 43, 278-286.	0.8	8
83	Effects of mutation on the amyloidogenic propensity of apolipoprotein C-II60–70 peptide. Physical Chemistry Chemical Physics, 2010, 12, 14762.	1.3	15
84	Substrate-mediated Stabilization of a Tetrameric Drug Target Reveals Achilles Heel in Anthrax. Journal of Biological Chemistry, 2010, 285, 5188-5195.	1.6	44
85	Methionine-Oxidized Amyloid Fibrils Are Poor Substrates for Human Methionine Sulfoxide Reductases A and B2. Biochemistry, 2010, 49, 2981-2983.	1.2	14
86	Phospholipids Enhance Nucleation but Not Elongation of Apolipoprotein C-II Amyloid Fibrils. Journal of Molecular Biology, 2010, 399, 731-740.	2.0	15
87	Exploring the dihydrodipicolinate synthase tetramer: How resilient is the dimer–dimer interface?. Archives of Biochemistry and Biophysics, 2010, 494, 58-63.	1.4	30
88	Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1977-1982.	3.3	87
89	Effect of Oxidation and Mutation on the Conformational Dynamics and Fibril Assembly of Amyloidogenic Peptides Derived from Apolipoprotein C-II. Journal of Physical Chemistry B, 2009, 113, 14006-14014.	1.2	15
90	Lipids Enhance Apolipoprotein C-II-Derived Amyloidogenic Peptide Oligomerization but Inhibit Fibril Formation. Journal of Physical Chemistry B, 2009, 113, 9447-9453.	1.2	17

#	Article	IF	CITATIONS
91	Does domain swapping improve the stability of RNase A?. Biochemical and Biophysical Research Communications, 2009, 382, 114-118.	1.0	4
92	Effects of oxidation, pH and lipids on amyloidogenic peptide structure: implications for fibril formation?. European Biophysics Journal, 2008, 38, 99-110.	1.2	30
93	Irreversible inhibition of dihydrodipicolinate synthase by 4-oxo-heptenedioic acid analogues. Bioorganic and Medicinal Chemistry, 2008, 16, 9975-9983.	1.4	31
94	Conserved mainâ€chain peptide distortions: A proposed role for Ile203 in catalysis by dihydrodipicolinate synthase. Protein Science, 2008, 17, 2080-2090.	3.1	31
95	Phospholipid Interaction Induces Molecular-level Polymorphism in Apolipoprotein C-II Amyloid Fibrils via Alternative Assembly Pathways. Journal of Molecular Biology, 2008, 375, 240-256.	2.0	63
96	Evolution of Quaternary Structure in a Homotetrameric Enzyme. Journal of Molecular Biology, 2008, 380, 691-703.	2.0	77
97	Methionine Oxidation Inhibits Assembly and Promotes Disassembly of Apolipoprotein C-II Amyloid Fibrils. Biochemistry, 2008, 47, 10208-10217.	1.2	35
98	Structure and Evolution of a Novel Dimeric Enzyme from a Clinically Important Bacterial Pathogen. Journal of Biological Chemistry, 2008, 283, 27598-27603.	1.6	85
99	Crystal structure and kinetic study of dihydrodipicolinate synthase from <i>Mycobacterium tuberculosis</i> . Biochemical Journal, 2008, 411, 351-360.	1.7	74
100	A Structural Core Within Apolipoprotein C-II Amyloid Fibrils Identified Using Hydrogen Exchange and Proteolysis. Journal of Molecular Biology, 2007, 366, 1639-1651.	2.0	53
101	Characterization of the structure, expression and function of Pinus radiata D. Don arabinogalactan-proteins. Planta, 2007, 226, 1131-1142.	1.6	30
102	Insight into the self-association of key enzymes from pathogenic species. European Biophysics Journal, 2005, 34, 469-476.	1.2	50
103	The crystal structures of native and (S)-lysine-bound dihydrodipicolinate synthase fromEscherichia coliwith improved resolution show new features of biological significance. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1116-1124.	2.5	77
104	Dihydrodipicolinate synthase (DHDPS) from Escherichia coli displays partial mixed inhibition with respect to its first substrate, pyruvate. Biochimie, 2004, 86, 311-315.	1.3	47