Anne O'Garra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2320468/publications.pdf

Version: 2024-02-01

142 papers 38,712 citations

79 h-index 9839 141 g-index

147 all docs

 $\begin{array}{c} 147 \\ \text{docs citations} \end{array}$

147 times ranked 38768 citing authors

#	Article	lF	CITATIONS
1	INTERLEUKIN-10AND THEINTERLEUKIN-10 RECEPTOR. Annual Review of Immunology, 2001, 19, 683-765.	9.5	5,712
2	A CD4+T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature, 1997, 389, 737-742.	13.7	3,342
3	The regulation of IL-10 production by immune cells. Nature Reviews Immunology, 2010, 10, 170-181.	10.6	2,408
4	Type I interferons in infectious disease. Nature Reviews Immunology, 2015, 15, 87-103.	10.6	1,902
5	An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466, 973-977.	13.7	1,632
6	Cytokines Induce the Development of Functionally Heterogeneous T Helper Cell Subsets. Immunity, 1998, 8, 275-283.	6.6	1,409
7	The Immune Response in Tuberculosis. Annual Review of Immunology, 2013, 31, 475-527.	9.5	1,108
8	In Vitro Generation of Interleukin 10–producing Regulatory CD4+ T Cells Is Induced by Immunosuppressive Drugs and Inhibited by T Helper Type 1 (Th1)– and Th2-inducing Cytokines. Journal of Experimental Medicine, 2002, 195, 603-616.	4.2	1,069
9	Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nature Immunology, 2001, 2, 1144-1150.	7.0	912
10	Regulatory T cells and mechanisms of immune system control. Nature Medicine, 2004, 10, 801-805.	15.2	719
11	IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity, 2019, 50, 871-891.	6.6	603
12	Biological properties of interleukin 10. Trends in Immunology, 1992, 13, 198-200.	7. 5	585
13	TH1 cells control themselves by producing interleukin-10. Nature Reviews Immunology, 2007, 7, 425-428.	10.6	514
14	Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. Journal of Clinical Investigation, 2005, 116, 146-155.	3.9	511
15	The Development of Murine Plasmacytoid Dendritic Cell Precursors Is Differentially Regulated by FLT3-ligand and Granulocyte/Macrophage Colony-Stimulating Factor. Journal of Experimental Medicine, 2002, 195, 953-958.	4.2	504
16	Flexibility of Mouse Classical and Plasmacytoid-derived Dendritic Cells in Directing T Helper Type 1 and 2 Cell Development. Journal of Experimental Medicine, 2003, 197, 101-109.	4.2	502
17	Antigen-Engaged B Cells Undergo Chemotaxis toward the T Zone and Form Motile Conjugates with Helper T Cells. PLoS Biology, 2005, 3, e150.	2.6	495
18	Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. Journal of Experimental Medicine, 2009, 206, 43-49.	4.2	454

#	Article	IF	Citations
19	Biology and therapeutic potential of interleukin-10. Journal of Experimental Medicine, 2020, 217, .	4.2	440
20	Role of cytokines in determining T-lymphocyte function. Current Opinion in Immunology, 1994, 6, 458-466.	2.4	387
21	Strategies for use of ILâ€10 or its antagonists in human disease. Immunological Reviews, 2008, 223, 114-131.	2.8	383
22	The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends in Cell Biology, 2000, 10, 542-550.	3.6	361
23	Gata-3 Induces T Helper Cell Type 2 (Th2) Cytokine Expression and Chromatin Remodeling in Committed Th1 Cells. Journal of Experimental Medicine, 2000, 192, 105-116.	4.2	359
24	Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. International Immunology, 1990, 2, 821-832.	1.8	357
25	From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nature Immunology, 2012, 13, 925-931.	7.0	334
26	SOCS-3 regulates onset and maintenance of TH2-mediated allergic responses. Nature Medicine, 2003, 9, 1047-1054.	15.2	329
27	Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from \hat{l}^2 TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN- \hat{l}^3 production is IFN- \hat{l}^3 -dependent. International Immunology, 1993, 5, 1119-1128.	1.8	326
28	Biological properties of interleukin 10. Journal of Clinical Immunology, 1992, 12, 239-247.	2.0	325
29	Reversal of Tumor-induced Dendritic Cell Paralysis by CpG Immunostimulatory Oligonucleotide and Anti–Interleukin 10 Receptor Antibody. Journal of Experimental Medicine, 2002, 196, 541-549.	4.2	322
30	Type I interferon dependence of plasmacytoid dendritic cell activation and migration. Journal of Experimental Medicine, 2005, 201, 1157-1167.	4.2	307
31	Interleukin-10 Production by Th1 Cells Requires Interleukin-12-Induced STAT4 Transcription Factor and ERK MAP Kinase Activation by High Antigen Dose. Immunity, 2009, 31, 209-219.	6.6	303
32	Neutrophils in tuberculosis: friend or foe?. Trends in Immunology, 2012, 33, 14-25.	2.9	279
33	Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers. PLoS ONE, 2013, 8, e70630.	1.1	254
34	CD4+ T-cell subsets in autoimmunity. Current Opinion in Immunology, 1997, 9, 872-883.	2.4	226
35	CD8+ T cells control Th2-driven pathology during pulmonary respiratory syncytial virus infection. European Journal of Immunology, 1997, 27, 3341-3349.	1.6	222
36	Aberrant in Vivo T Helper Type 2 Cell Response and Impaired Eosinophil Recruitment in Cc Chemokine Receptor 8 Knockout Mice. Journal of Experimental Medicine, 2001, 193, 573-584.	4.2	222

#	Article	IF	CITATIONS
37	Enhanced protection to ⟨i⟩Mycobacterium tuberculosis⟨ i⟩ infection in ILâ€10â€deficient mice is accompanied by early and enhanced Th1 responses in the lung. European Journal of Immunology, 2010, 40, 2200-2210.	1.6	218
38	Tripartite-motif proteins and innate immune regulation. Current Opinion in Immunology, 2011, 23, 46-56.	2.4	210
39	A Restricted Subset of Dendritic Cells Captures Airborne Antigens and Remains Able to Activate Specific T Cells Long after Antigen Exposure. Immunity, 2002, 16, 271-283.	6.6	194
40	Detectable Changes in The Blood Transcriptome Are Present after Two Weeks of Antituberculosis Therapy. PLoS ONE, 2012, 7, e46191.	1.1	190
41	IL-27 Promotes IL-10 Production by Effector Th1 CD4+ T Cells: A Critical Mechanism for Protection from Severe Immunopathology during Malaria Infection. Journal of Immunology, 2012, 188, 1178-1190.	0.4	187
42	Type I interferons in tuberculosis: Foe and occasionally friend. Journal of Experimental Medicine, 2018, 215, 1273-1285.	4.2	187
43	Further Checkpoints in Th1 Development. Immunity, 2002, 16, 755-758.	6.6	181
44	CD25+CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. International Immunology, 2005, 17, 279-288.	1.8	178
45	Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10–producing suppressive CD4+ T cells. Journal of Experimental Medicine, 2012, 209, 109-121.	4.2	171
46	The role of 1α,25â€dihydroxyvitamin <scp>D</scp> 3 and cytokines in the promotion of distinct <scp>F</scp> oxp3 ⁺ and <scp>IL</scp> â€10 ⁺ <scp>CD</scp> 4 ⁺ <scp>T</scp> cells. European Journal of Immunology, 2012, 42, 2697-2708.	1.6	170
47	Type I IFN Induces IL-10 Production in an IL-27–Independent Manner and Blocks Responsiveness to IFN-γ for Production of IL-12 and Bacterial Killing in <i>Mycobacterium tuberculosis</i> –Infected Macrophages. Journal of Immunology, 2014, 193, 3600-3612.	0.4	169
48	The human immune response to tuberculosis and its treatment: a view from the blood. Immunological Reviews, 2015, 264, 88-102.	2.8	168
49	Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nature Medicine, 2016, 22, 1090-1093.	15.2	166
50	TPL-2 negatively regulates interferon- \hat{l}^2 production in macrophages and myeloid dendritic cells. Journal of Experimental Medicine, 2009, 206, 1863-1871.	4.2	165
51	From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce TH1 development. Nature Immunology, 2009, 10, 929-932.	7.0	153
52	TGF- \hat{l}^21 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. European Journal of Immunology, 2000, 30, 2639-2649.	1.6	150
53	GATA-3 Significantly Downregulates IFN- \hat{l}^3 Production from Developing Th1 Cells in Addition to Inducing IL-4 and IL-5 Levels. Clinical Immunology, 1999, 91, 134-144.	1.4	148
54	Blockade of IL-10 Signaling during Bacillus Calmette-Guà ©rin Vaccination Enhances and Sustains Th1, Th17, and Innate Lymphoid IFN- \hat{l}^3 and IL-17 Responses and Increases Protection to <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2012, 189, 4079-4087.	0.4	147

#	Article	IF	Citations
55	The Regulation of IL-10 Expression. Current Topics in Microbiology and Immunology, 2014, 380, 157-190.	0.7	143
56	A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nature Communications, 2018, 9, 2308.	5.8	142
57	Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. Journal of Experimental Medicine, 2006, 203, 1427-1433.	4.2	135
58	Pathogen-induced Th1 phenotype development in CD4+ $\hat{l}\pm\hat{l}^2$ -TCR transgenic T cells is macrophage dependent. International Immunology, 1993, 5, 371-382.	1.8	133
59	GATA-3 Directly Remodels the <i>IL-10</i> Locus Independently of IL-4 in CD4+ T Cells. Journal of Immunology, 2006, 176, 3470-3479.	0.4	133
60	Type I interferonâ€dependent and â€independent expression of tripartite motif proteins in immune cells. European Journal of Immunology, 2008, 38, 619-630.	1.6	131
61	TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNF \hat{I} ± in LPS-stimulated macrophages. Journal of Cell Science, 2008, 121, 149-154.	1.2	124
62	A Critical Role for Interleukin 18 in Primary and Memory Effector Responses to Listeria monocytogenes That Extends Beyond Its Effects on Interferon \hat{I}^3 Production. Journal of Experimental Medicine, 2001, 194, 343-354.	4.2	123
63	Influenza A Virus Impairs Control of Mycobacterium tuberculosis Coinfection Through a Type I Interferon Receptor–Dependent Pathway. Journal of Infectious Diseases, 2014, 209, 270-274.	1.9	123
64	Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza. Nature Immunology, 2018, 19, 625-635.	7.0	119
65	c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells. Nature Immunology, 2018, 19, 497-507.	7.0	118
66	IL-10 Regulates Viral Lung Immunopathology during Acute Respiratory Syncytial Virus Infection in Mice. PLoS ONE, 2012, 7, e32371.	1.1	116
67	Identification of a Macrophage-Specific Chromatin Signature in the IL-10 Locus. Journal of Immunology, 2005, 175, 1041-1046.	0.4	114
68	Receptor Signalling and Crosstalk in B Lymphocytes. Immunological Reviews, 1987, 99, 19-38.	2.8	111
69	Role of T Cells in Innate and Adaptive Immunity against MurineBurkholderia pseudomalleiInfection. Journal of Infectious Diseases, 2006, 193, 370-379.	1.9	109
70	Activation and proliferation signals in mouse B cells VIII. Induction of DNA synthesis in B cells by a combination of calcium ionophores and phorbol myristate acetate. European Journal of Immunology, 1986, 16, 92-97.	1.6	108
71	Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nature Communications, 2020, 11, 5566.	5.8	106
72	Detection of in vivo expression of interleukin-10 using a semi-quantitative polymerase chain reaction method in Schistosoma mansoni infected mice. Journal of Immunological Methods, 1993, 162, 211-223.	0.6	105

#	Article	IF	CITATIONS
73	Cytokine Networking in Lungs of Immunocompetent Mice in Response to Inhaled Aspergillus fumigatus. Infection and Immunity, 2001, 69, 1554-1560.	1.0	104
74	Programmed death ligand 1 is overâ€expressed by neutrophils in the blood of patients with active tuberculosis. European Journal of Immunology, 2011, 41, 1941-1947.	1.6	104
75	Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E964-E973.	3.3	96
76	Highlights of 10 years of immunology in Nature Reviews Immunology. Nature Reviews Immunology, 2011, 11, 693-702.	10.6	95
77	Differentiation of human TH-17 cells does require TGF-β!. Nature Immunology, 2008, 9, 588-590.	7.0	92
78	Systems Biology Approaches Reveal a Specific Interferon-Inducible Signature in HTLV-1 Associated Myelopathy. PLoS Pathogens, 2012, 8, e1002480.	2.1	92
79	INTERLEUKINS AND THE IMMUNE SYSTEM 2. Lancet, The, 1989, 333, 1003-1005.	6.3	90
80	The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis. Nature Immunology, 2018, 19, 1159-1168.	7.0	88
81	Identification of a novel thymocyte growth-promoting factor derived from B cell lymphomas. Cellular Immunology, 1990, 129, 228-240.	1.4	87
82	Type I IFN Inhibits Alternative Macrophage Activation during <i>Mycobacterium tuberculosis</i> Infection and Leads to Enhanced Protection in the Absence of IFN-I ³ Signaling. Journal of Immunology, 2016, 197, 4714-4726.	0.4	87
83	ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses. Nature Immunology, 2006, 7, 606-615.	7.0	84
84	TPL-2–ERK1/2 Signaling Promotes Host Resistance against Intracellular Bacterial Infection by Negative Regulation of Type I IFN Production. Journal of Immunology, 2013, 191, 1732-1743.	0.4	84
85	T Cell–Derived IL-10 Impairs Host Resistance to <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2017, 199, 613-623.	0.4	83
86	Integrated Tâ€cell receptor and costimulatory signals determine TGFâ€Î²â€dependent differentiation and maintenance of Foxp3 ⁺ regulatory T cells. European Journal of Immunology, 2011, 41, 1242-1248.	1.6	81
87	HIV–tuberculosis-associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and inflammasome signalling. Nature Communications, 2015, 6, 8451.	5.8	81
88	The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis. PLoS ONE, 2016, 11, e0162220.	1.1	81
89	The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130427.	1.8	75
90	Twenty-first century Foxp3. Nature Immunology, 2003, 4, 304-306.	7.0	71

#	Article	IF	Citations
91	Vaccination against tuberculosis: How can we better BCG?. Microbial Pathogenesis, 2013, 58, 2-16.	1.3	71
92	Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nature Immunology, 2020, 21, 464-476.	7.0	71
93	Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nature Reviews Immunology, 2023, 23, 121-133.	10.6	71
94	Early expression of cytokines in lymph nodes after treatment in vivo with Staphylococcus enterotoxin B. Journal of Immunological Methods, 1994, 175, 47-58.	0.6	69
95	Development and Function of T Helper 1 Cells. Advances in Immunology, 2004, 83, 133-162.	1.1	65
96	Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases. Nature Communications, 2019, 10, 2887.	5.8	65
97	Mouse $\hat{I}^3\hat{I}$ TCR+NK1.1+ thymocytes specifically produce interleukin-4, are major histocompatibility complex class I independent, and are developmentally related to $\hat{I}\pm\hat{I}^2$ TCR+NK1.1+ thymocytes. European Journal of Immunology, 1996, 26, 1424-1429.	1.6	63
98	B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 801-813.	2.5	63
99	Quantitative events determine the differentiation and function of helper T cells. Nature Immunology, 2011, 12, 288-294.	7.0	58
100	Polymerase chain reaction for detection of cytokine gene expression. Current Opinion in Immunology, 1992, 4, 211-215.	2.4	56
101	Anti–Interleukin 10 Receptor Monoclonal Antibody Is an Adjuvant for T Helper Cell Type 1 Responses to Soluble Antigen Only in the Presence of Lipopolysaccharide. Journal of Experimental Medicine, 2000, 192, 1529-1534.	4.2	52
102	Immunomodulatory Role of Endogenous Interleukin-18 in Gamma Interferon-Mediated Resolution of Replicative Legionella pneumophila Lung Infection. Infection and Immunity, 2000, 68, 6567-6573.	1.0	52
103	Differential representations of memory T cell subsets are characteristic of polarized immunity in leprosy and atopic diseases. International Immunology, 1999, 11, 1801-1810.	1.8	51
104	A 380-gene meta-signature of active tuberculosis compared with healthy controls. European Respiratory Journal, 2016, 47, 1873-1876.	3.1	51
105	Differential postâ€transcriptional regulation of <scp>IL</scp> â€10 by <scp>TLR</scp> 2 and <scp>TLR</scp> 4â€activated macrophages. European Journal of Immunology, 2014, 44, 856-866.	1.6	42
106	Systems approaches to studying the immune response in tuberculosis. Current Opinion in Immunology, 2013, 25, 579-587.	2.4	41
107	In vitro generation of IL-10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by Th1- and Th2-inducing cytokines. Immunology Letters, 2003, 85, 135-139.	1.1	39
108	NF-κB1 Inhibits TLR-Induced IFN-β Production in Macrophages through TPL-2–Dependent ERK Activation. Journal of Immunology, 2011, 186, 1989-1996.	0.4	39

#	Article	IF	CITATIONS
109	Regulation of Experimental Autoimmune Encephalomyelitis by TPL-2 Kinase. Journal of Immunology, 2014, 192, 3518-3529.	0.4	39
110	A T cell–myeloid IL-10 axis regulates pathogenic IFN-γ–dependent immunity in a mouse model of type 2–low asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 666-678.e9.	1.5	39
111	Cytokines and Ly-1 (B1) B Cells. International Reviews of Immunology, 1992, 8, 219-234.	1.5	38
112	Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. Journal of Experimental Medicine, 2021, 218, .	4.2	36
113	T-cell differentiation: Commitment factors for T helper cells. Current Biology, 2000, 10, R492-R494.	1.8	35
114	Differential Production of Type I IFN Determines the Reciprocal Levels of IL-10 and Proinflammatory Cytokines Produced by C57BL/6 and BALB/c Macrophages. Journal of Immunology, 2016, 197, 2838-2853.	0.4	35
115	The BCL1 B lymphoma responds to IL-4, IL-5, and GM-CSF. Cellular Immunology, 1989, 123, 189-200.	1.4	34
116	Critical Role of Type 1 Cytokines in Controlling Initial Infection with Burkholderia mallei. Infection and Immunity, 2006, 74, 5333-5340.	1.0	31
117	Development of a fixed module repertoire for the analysis and interpretation of blood transcriptome data. Nature Communications, 2021, 12, 4385.	5.8	29
118	Are dendritic cells afraid of commitment?. Nature Immunology, 2004, 5, 1206-1208.	7.0	25
119	Contribution of cytokines to pathology and protection in virus infection. Current Opinion in Virology, 2011, 1, 184-195.	2.6	24
120	Signatures of malaria-associated pathology revealed by high-resolution whole-blood transcriptomics in a rodent model of malaria. Scientific Reports, 2017, 7, 41722.	1.6	24
121	Regula'ten' the gut. Nature Immunology, 2007, 8, 905-907.	7.0	23
122	The Blood Transcriptome of Experimental Melioidosis Reflects Disease Severity and Shows Considerable Similarity with the Human Disease. Journal of Immunology, 2015, 195, 3248-3261.	0.4	20
123	Breakpoints in immunoregulation required for Th1 cells to induce diabetes. European Journal of Immunology, 2006, 36, 2315-2323.	1.6	19
124	Establishing the Follicular Helper Identity. Immunity, 2009, 31, 450-452.	6.6	19
125	Transcription Factors Directing Th2 Differentiation: Gata-3 Plays a Dominant Role. Journal of Immunology, 2016, 196, 4423-4425.	0.4	19
126	High-Dose IL-2 Skews a Glucocorticoid-Driven IL-17+IL-10+ Memory CD4+ T Cell Response towards a Single IL-10–Producing Phenotype. Journal of Immunology, 2019, 202, 684-693.	0.4	18

#	Article	IF	CITATIONS
127	Commit ye helpers. Nature, 2000, 404, 719-720.	13.7	17
128	Identification of the Key Differential Transcriptional Responses of Human Whole Blood Following TLR2 or TLR4 Ligation In-Vitro. PLoS ONE, 2014, 9, e97702.	1.1	17
129	Immunity Benefits from a Little Suppression. Science, 2008, 320, 1168-1169.	6.0	13
130	Transcriptomic Characterization of Tuberculous Sputum Reveals a Host Warburg Effect and Microbial Cholesterol Catabolism. MBio, 2021, 12, e0176621.	1.8	11
131	Systems Approach to Understand the Immune Response in Tuberculosis: An Iterative Process between Mouse Models and Human Disease. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 173-177.	2.0	10
132	Analysis of Transcriptional Signatures in Response to Listeria monocytogenes Infection Reveals Temporal Changes That Result from Type I Interferon Signaling. PLoS ONE, 2016, 11, e0150251.	1.1	10
133	Regulating the regulator: Bhlhe40 directly keeps IL-10 in check. Journal of Experimental Medicine, 2018, 215, 1767-1769.	4.2	9
134	The science of infectious diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20140055.	1.8	8
135	Remembering Ralph Steinman. Journal of Experimental Medicine, 2011, 208, 2343-2347.	4.2	5
136	Interleukin-10: Cytokines in Anti-inflammation and Tolerance. , 2014, , 327-352.		5
137	Brigitte Askonas (1923–2013). Nature, 2013, 494, 37-37.	13.7	4
138	Checkpoints for regulation of development and IFN-γ production by Th1 cells in TCR-transgenic models. Immunology Letters, 1999, 65, 41-44.	1.1	2
139	Development and function of IL-10-secreting regulatory T cells: Comparison with naturally occurring CD4+CD25+ regulatory T cells. International Congress Series, 2005, 1285, 160-168.	0.2	1
140	Editorial overview. Current Opinion in Immunology, 2012, 24, 361-363.	2.4	1
141	JEM women in STEM: Unique journeys with a common purpose. Journal of Experimental Medicine, 2020, 217, .	4.2	1
142	Driving change in tuberculosis research: an interview with Anne O'Garra. DMM Disease Models and Mechanisms, 2013, 6, 6-8.	1.2	0