Konstantin A Lukyanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2320273/publications.pdf

Version: 2024-02-01

176 papers 18,887 citations

28190 55 h-index 134 g-index

191 all docs

191 docs citations

191 times ranked

20044 citing authors

#	Article	IF	Citations
1	Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6025-6030.	3.3	2,822
2	Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiological Reviews, 2010, 90, 1103-1163.	13.1	1,175
3	Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods, 2006, 3, 281-286.	9.0	1,096
4	An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Research, 1995, 23, 1087-1088.	6.5	977
5	Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nature Biotechnology, 2006, 24, 461-465.	9.4	673
6	Bright far-red fluorescent protein for whole-body imaging. Nature Methods, 2007, 4, 741-746.	9.0	591
7	Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods, 2007, 4, 555-557.	9.0	582
8	A genetically encoded photosensitizer. Nature Biotechnology, 2006, 24, 95-99.	9.4	519
9	A ubiquitous family of putative gap junction molecules. Current Biology, 2000, 10, R473-R474.	1.8	485
10	Photoactivatable fluorescent proteins. Nature Reviews Molecular Cell Biology, 2005, 6, 885-890.	16.1	461
11	Fluorescent proteins as a toolkit for in vivo imaging. Trends in Biotechnology, 2005, 23, 605-613.	4.9	439
12	Local fitness landscape of the green fluorescent protein. Nature, 2016, 533, 397-401.	13.7	438
13	GFP-like Proteins as Ubiquitous Metazoan Superfamily: Evolution of Functional Features and Structural Complexity. Molecular Biology and Evolution, 2004, 21, 841-850.	3.5	394
14	Photoswitchable cyan fluorescent protein for protein tracking. Nature Biotechnology, 2004, 22, 1435-1439.	9.4	345
15	Diversity and evolution of the green fluorescent protein family. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4256-4261.	3.3	340
16	The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnology, 2004, 22, 289-296.	9.4	307
17	Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotechnology, 2003, 21, 191-194.	9.4	304
18	Natural Animal Coloration Can Be Determined by a Nonfluorescent Green Fluorescent Protein Homolog. Journal of Biological Chemistry, 2000, 275, 25879-25882.	1.6	300

#	Article	IF	CITATIONS
19	Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nature Cell Biology, 2008, 10, 149-159.	4.6	257
20	Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nature Protocols, 2007, 2, 2024-2032.	5.5	251
21	GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Letters, 2001, 507, 16-20.	1.3	240
22	Equalizing cDNA Subtraction Based on Selective Suppression of Polymerase Chain Reaction: Cloning of Jurkat Cell Transcripts Induced by Phytohemaglutinin and Phorbol 12-Myristate 13-Acetate. Analytical Biochemistry, 1996, 240, 90-97.	1.1	239
23	Near-infrared fluorescent proteins. Nature Methods, 2010, 7, 827-829.	9.0	205
24	Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?. Chemical Reviews, 2017, 117, 758-795.	23.0	203
25	Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nature Protocols, 2006, 1, 947-953.	5.5	189
26	Green fluorescent proteins are light-induced electron donors. Nature Chemical Biology, 2009, 5, 459-461.	3.9	176
27	Genetically encoded fluorescent redox sensors. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 745-756.	1.1	165
28	Conformationally Locked Chromophores as Models of Excited-State Proton Transfer in Fluorescent Proteins. Journal of the American Chemical Society, 2012, 134, 6025-6032.	6.6	164
29	A strategy for the generation of non-aggregating mutants of Anthozoafluorescent proteins. FEBS Letters, 2002, 511, 11-14.	1.3	148
30	Chromophore Environment Provides Clue to "Kindling Fluorescent Protein―Riddle. Journal of Biological Chemistry, 2003, 278, 7215-7219.	1.6	136
31	zFP538, a Yellow-Fluorescent Protein fromZoanthus, Contains a Novel Three-Ring Chromophoreâ€,‡. Biochemistry, 2005, 44, 202-212.	1.2	136
32	Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9221-9225.	3.3	135
33	Family of the green fluorescent protein: Journey to the end of the rainbow. BioEssays, 2002, 24, 953-959.	1.2	131
34	Structural Basis for Phototoxicity of the Genetically Encoded Photosensitizer KillerRed. Journal of Biological Chemistry, 2009, 284, 32028-32039.	1.6	123
35	Red Fluorescent Protein with Reversibly Photoswitchable Absorbance for Photochromic FRET. Chemistry and Biology, 2010, 17, 745-755.	6.2	123
36	Fluorescence imaging using synthetic GFP chromophores. Current Opinion in Chemical Biology, 2015, 27, 64-74.	2.8	120

#	Article	IF	Citations
37	Mirror orientation selection (MOS): a method for eliminating false positive clones from libraries generated by suppression subtractive hybridization. Nucleic Acids Research, 2000, 28, 90e-90.	6.5	118
38	Using photoactivatable fluorescent protein Dendra2 to track protein movement. BioTechniques, 2007, 42, 553-563.	0.8	111
39	Common Pathway for the Red Chromophore Formation in Fluorescent Proteins and Chromoproteins. Chemistry and Biology, 2004, 11, 845-854.	6.2	108
40	Bidirectional Increase in Permeability of Nuclear Envelope upon Poliovirus Infection and Accompanying Alterations of Nuclear Pores. Journal of Virology, 2004, 78, 10166-10177.	1.5	102
41	Structural basis for the fast maturation of Arthropoda green fluorescent protein. EMBO Reports, 2006, 7, 1006-1012.	2.0	99
42	Novel uses of fluorescent proteins. Current Opinion in Chemical Biology, 2015, 27, 1-9.	2.8	96
43	A colourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochemical Journal, 2003, 373, 403-408.	1.7	91
44	Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochemical Journal, 2005, 392, 649-654.	1.7	86
45	Far-red fluorescent tag for protein labelling. Biochemical Journal, 2002, 368, 17-21.	1.7	83
46	Synthesis and Properties of the Chromophore of the asFP595 Chromoprotein fromAnemonia sulcataâ€. Biochemistry, 2005, 44, 5788-5793.	1.2	74
47	Fast reversibly photoswitching red fluorescent proteins for live-cell RESOLFT nanoscopy. Nature Methods, 2018, 15, 601-604.	9.0	73
48	Method for real-time monitoring of protein degradation at the single cell level. BioTechniques, 2007, 42, 446-450.	0.8	71
49	Transducin GTPase provides for rapid quenching of the cGMP cascade in rod outer segments. FEBS Letters, 1989, 250, 353-356.	1.3	70
50	Cell culture medium affects GFP photostability: a solution. Nature Methods, 2009, 6, 859-860.	9.0	70
51	Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5059-5067.	1.1	69
52	Redâ€Shifted Fluorescent Aminated Derivatives of a Conformationally Locked GFP Chromophore. Chemistry - A European Journal, 2014, 20, 13234-13241.	1.7	68
53	The First Mutant of the Aequorea victoria Green Fluorescent Protein That Forms a Red Chromophore. Biochemistry, 2008, 47, 4666-4673.	1.2	67
54	Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 604-611.	1.9	66

#	Article	IF	CITATIONS
55	Protein labeling for live cell fluorescence microscopy with a highly photostable renewable signal. Chemical Science, 2017, 8, 7138-7142.	3.7	62
56	Anti-Fading Media for Live Cell GFP Imaging. PLoS ONE, 2012, 7, e53004.	1.1	59
57	Regulation of average length of complex PCR product. Nucleic Acids Research, 1999, 27, 23e-23.	6.5	57
58	KillerOrange, a Genetically Encoded Photosensitizer Activated by Blue and Green Light. PLoS ONE, 2015, 10, e0145287.	1.1	56
59	Green Fluorescent Protein with Anionic Tryptophan-Based Chromophore and Long Fluorescence Lifetime. Biophysical Journal, 2015, 109, 380-389.	0.2	56
60	Turning On and Off Photoinduced Electron Transfer in Fluorescent Proteins by π-Stacking, Halide Binding, and Tyr145 Mutations. Journal of the American Chemical Society, 2016, 138, 4807-4817.	6.6	52
61	Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis. BMC Biochemistry, 2002, 3, 7.	4.4	50
62	Inverted Terminal Repeats Permit the Average Length of Amplified DNA Fragments to Be Regulated during Preparation of cDNA Libraries by Polymerase Chain Reaction. Analytical Biochemistry, 1995, 229, 198-202.	1.1	49
63	Phototoxic effects of fluorescent protein KillerRed on tumor cells in mice. Journal of Biophotonics, 2013, 6, 283-290.	1.1	49
64	Synthesis and properties of the red chromophore of the green-to-red photoconvertible fluorescent protein Kaede and its analogs. Bioorganic Chemistry, 2008, 36, 96-104.	2.0	48
65	Color transitions in coral's fluorescent proteins by site-directed mutagenesis. BMC Biochemistry, 2001, 2, 6.	4.4	47
66	Method for quantitative analysis of nonsense-mediated mRNA decay at the single cell level. Scientific Reports, 2015, 5, 7729.	1.6	47
67	Molecule by molecule PCR amplification of complex DNA mixtures for direct sequencing: an approach to in vitro cloning. Nucleic Acids Research, 1996, 24, 2194-2195.	6.5	44
68	Construction of cDNA Libraries from Small Amounts of Total RNA Using the Suppression PCR Effect. Biochemical and Biophysical Research Communications, 1997, 230, 285-288.	1.0	44
69	Alternative Cyclization in GFP-like Proteins Family. Journal of Biological Chemistry, 2001, 276, 21012-21016.	1.6	44
70	Light-induced blockage of cell division with a chromatin-targeted phototoxic fluorescent protein. Biochemical Journal, 2011, 435, 65-71.	1.7	44
71	Fluorescence time-resolved macroimaging. Optics Letters, 2018, 43, 3152.	1.7	41
72	Fluorescent proteins as light-inducible photochemical partners. Photochemical and Photobiological Sciences, 2010, 9, 1301-1306.	1.6	39

#	Article	IF	CITATIONS
73	Comparative study reveals better far-red fluorescent protein for whole body imaging. Scientific Reports, 2015, 5, 10332.	1.6	38
74	Genetically encoded far-red fluorescent sensors for caspase-3 activity. BioTechniques, 2016, 60, 62-68.	0.8	37
75	Femtosecond study of light-induced fluorescence increase of the dark chromoprotein asFP595. Chemical Physics, 2006, 323, 149-160.	0.9	36
76	Tryptophan-based chromophore in fluorescent proteins can be anionic. Scientific Reports, 2012, 2, 608.	1.6	35
77	Structural Evidence for a Dehydrated Intermediate in Green Fluorescent Protein Chromophore Biosynthesis. Journal of Biological Chemistry, 2010, 285, 15978-15984.	1.6	31
78	Noggin4 is a long-range inhibitor of Wnt8 signalling that regulates head development in Xenopus laevis. Scientific Reports, 2016, 6, 23049.	1.6	31
79	Bright GFP with subnanosecond fluorescence lifetime. Scientific Reports, 2018, 8, 13224.	1.6	31
80	Hetero-oligomeric tagging diminishes non-specific aggregation of target proteins fused with Anthozoa fluorescent proteins. Biochemical Journal, 2003, 371, 109-114.	1.7	29
81	A synthetic approach to GFP chromophore analogs from 3-azidocinnamates. Role of methyl rotors in chromophore photophysics. Chemical Communications, 2013, 49, 5778.	2.2	29
82	Docking-guided identification of protein hosts for GFP chromophore-like ligands. Journal of Materials Chemistry C, 2016, 4, 3036-3040.	2.7	29
83	Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed. Journal of Biomedical Optics, 2013, 19, 071403.	1.4	28
84	Analysis of alternative splicing of cassette exons at single-cell level using two fluorescent proteins. Nucleic Acids Research, 2012, 40, e57-e57.	6.5	27
85	Identification and characterization of a new family of C-type lectin-like genes from planaria Girardia tigrina. Glycobiology, 2002, 12, 463-472.	1.3	25
86	Fast and Precise Protein Tracking Using Repeated Reversible Photoactivation. Traffic, 2006, 7, 1304-1310.	1.3	25
87	Green-to-red primed conversion of Dendra2 using blue and red lasers. Chemical Communications, 2016, 52, 13144-13146.	2.2	25
88	Detection of planarian Antennapedia-like homeobox genes expressed during regeneration. Gene, 1995, 158, 197-202.	1.0	23
89	Crystal Structure of Phototoxic Orange Fluorescent Proteins with a Tryptophan-Based Chromophore. PLoS ONE, 2015, 10, e0145740.	1.1	23
90	Synthesis and Spectral and Chemical Properties of the Yellow Fluorescent Protein zFP538 Chromophore. Biochemistry, 2009, 48, 8077-8082.	1.2	22

#	Article	IF	CITATIONS
91	Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor. Biochemical and Biophysical Research Communications, 2017, 493, 1518-1521.	1.0	22
92	A Synthetic GFP-like Chromophore Undergoes Base-Catalyzed Autoxidation into Acylimine Red Form. Journal of Organic Chemistry, 2011, 76, 2782-2791.	1.7	20
93	Influence of the First Chromophore-Forming Residue on Photobleaching and Oxidative Photoconversion of EGFP and EYFP. International Journal of Molecular Sciences, 2019, 20, 5229.	1.8	18
94	Fluorescein Derivatives as Antibacterial Agents Acting via Membrane Depolarization. Biomolecules, 2020, 10, 309.	1.8	18
95	New Class of Blue Animal Pigments Based on Frizzled and Kringle Protein Domains. Journal of Biological Chemistry, 2004, 279, 43367-43370.	1.6	17
96	Intrinsic blinking of red fluorescent proteins for super-resolution microscopy. Chemical Communications, 2017, 53, 949-951.	2.2	17
97	Insertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor. PLoS ONE, 2017, 12, e0184225.	1.1	17
98	Structure of the red fluorescent protein from a lancelet (<i>Branchiostoma lanceolatum</i>): a novel GYG chromophore covalently bound to a nearby tyrosine. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1850-1860.	2.5	15
99	Genetically-encoded fluorescent probe for imaging of oxygenation gradients in living <i>Drosophila</i> . Development (Cambridge), 2018, 145, .	1.2	15
100	Studying SARS-CoV-2 with Fluorescence Microscopy. International Journal of Molecular Sciences, 2021, 22, 6558.	1.8	15
101	Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model. PLoS ONE, 2015, 10, e0144617.	1.1	14
102	Use of green fluorescent protein (GFP) and its homologs for in vivo protein motility studies. Biochemistry (Moscow), 2003, 68, 952-957.	0.7	13
103	Steady-state and time-resolved spectroscopic studies of green-to-red photoconversion of fluorescent protein Dendra2. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 280, 5-13.	2.0	13
104	Influence of cell growth conditions and medium composition on EGFP photostability in live cells. BioTechniques, 2015, 58, 258-261.	0.8	12
105	Efficient silica synthesis from tetra(glycerol)orthosilicate with cathepsin- and silicatein-like proteins. Scientific Reports, 2018, 8, 16759.	1.6	11
106	FUCCI-Red: a single-color cell cycle indicator for fluorescence lifetime imaging. Cellular and Molecular Life Sciences, 2021, 78, 3467-3476.	2.4	11
107	Highly photostable fluorescent labeling of proteins in live cells using exchangeable coiled coils heterodimerization. Cellular and Molecular Life Sciences, 2020, 77, 4429-4440.	2.4	10
108	A General Mechanism of Green-to-Red Photoconversions of GFP. Frontiers in Molecular Biosciences, 2020, 7, 176.	1.6	10

#	Article	IF	Citations
109	Structure of the green fluorescent protein NowGFP with an anionic tryptophan-based chromophore. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1699-1707.	2.5	9
110	CT26 murine colon carcinoma expressing the red fluorescent protein KillerRed as a highly immunogenic tumor model. Journal of Biomedical Optics, 2015, 20, 088002.	1.4	9
111	Struggle for photostability: Bleaching mechanisms of fluorescent proteins. Russian Journal of Bioorganic Chemistry, 2017, 43, 625-633.	0.3	9
112	Efficient Synthetic Approach to Fluorescent Oxazole-4-carboxylate Derivatives. Synthetic Communications, 2013, 43, 2337-2342.	1.1	8
113	Genetically Encoded Red Photosensitizers with Enhanced Phototoxicity. International Journal of Molecular Sciences, 2020, 21, 8800.	1.8	8
114	Green Fluorescence of Cytaeis Hydroids Living in Association with Nassarius Gastropods in the Red Sea. PLoS ONE, 2016, 11, e0146861.	1.1	8
115	Transient Fluorescence Labeling: Low Affinity—High Benefits. International Journal of Molecular Sciences, 2021, 22, 11799.	1.8	8
116	Lysosome-associated miniSOG as a photosensitizer for mammalian cells. BioTechniques, 2016, 61, 92-4.	0.8	7
117	The Principles of Super-Resolution Fluorescence Microscopy (Review). Sovremennye Tehnologii V Medicine, 2016, 8, 130-140.	0.4	7
118	Spectral diversity among members of the green fluorescent protein family in hydroid jellyfish (Cnidaria, Hydrozoa). Russian Journal of Bioorganic Chemistry, 2005, 31, 43-47.	0.3	6
119	Discovery and Properties of GFP-Like Proteins from Nonbioluminescent Anthozoa. Methods of Biochemical Analysis, 2005, , 121-138.	0.2	6
120	Analysis of Nonsense-Mediated mRNA Decay at the Single-Cell Level Using Two Fluorescent Proteins. Methods in Enzymology, 2016, 572, 291-314.	0.4	6
121	Yellow and Orange Fluorescent Proteins with Tryptophan-based Chromophores. ACS Chemical Biology, 2017, 12, 1867-1873.	1.6	6
122	A water-soluble precursor for efficient silica polymerization by silicateins. Biochemical and Biophysical Research Communications, 2018, 495, 2066-2070.	1.0	6
123	Genetically Encoded Fluorescent Sensor for Poly-ADP-Ribose. International Journal of Molecular Sciences, 2020, 21, 5004.	1.8	6
124	Chromophore reduction plus reversible photobleaching: how the mKate2 "photoconversion―works. Photochemical and Photobiological Sciences, 2021, 20, 791-803.	1.6	6
125	Fluorescence Imaging of Actin Fine Structure in Tumor Tissues Using SiR–Actin Staining. Anticancer Research, 2016, 36, 5287-5294.	0.5	6
126	Sequence-Independent Method forin VitroGeneration of Nested Deletions for Sequencing Large DNA Fragments. Analytical Biochemistry, 1998, 258, 138-141.	1.1	5

#	Article	IF	Citations
127	Deciphering the Role of Positions 145 and 165 in Fluorescence Lifetime Shortening in the EGFP Variants. Biomolecules, 2020, 10, 1547.	1.8	5
128	Immunotherapy of Cancer (Review). Sovremennye Tehnologii V Medicine, 2016, 8, 173-182.	0.4	5
129	Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part II., 2021, 13, 17-32.		5
130	Red Fluorescent Genetically Encoded Voltage Indicators with Millisecond Responsiveness. Sensors, 2019, 19, 2982.	2.1	4
131	Impacts of OrX and cAMP-insensitive Orco to the insect olfactory heteromer activity. Molecular Biology Reports, 2021, 48, 4549-4561.	1.0	4
132	Modern Research Techniques of Apoptotic Cell Death (Review). Sovremennye Tehnologii V Medicine, 2015, 7, 172-182.	0.4	4
133	Discovery and properties of GFP-like proteins from nonbioluminescent anthozoa. Methods of Biochemical Analysis, 2006, 47, 121-38.	0.2	4
134	Fluorophores for single-molecule localization microscopy. Russian Journal of Bioorganic Chemistry, 2017, 43, 227-234.	0.3	3
135	Functioning of Fluorescent Proteins in Aggregates in Anthozoa Species and in Recombinant Artificial Models. International Journal of Molecular Sciences, 2017, 18, 1503.	1.8	3
136	PDT with genetically encoded photosensitizer miniSOG on a tumor spheroid model: A comparative study of continuous-wave and pulsed irradiation. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129978.	1.1	3
137	Novel fluorescent proteins: diversity, mutagenesis and applications. , 0, 2004, .		3
138	Insight into redox regulation of apoptosis in cancer cells with multiparametric live-cell microscopy. Scientific Reports, 2022, 12, 4476.	1.6	3
139	Genetically Encoded Fluorescent Sensors for SARS-CoV-2 Papain-like Protease PLpro. International Journal of Molecular Sciences, 2022, 23, 7826.	1.8	3
140	Bimolecular fluorescence complementation based on the red fluorescent protein FusionRed. Russian Journal of Bioorganic Chemistry, 2016, 42, 619-623.	0.3	2
141	Generation of Cell Lines Stably Expressing a Fluorescent Reporter of Nonsense-Mediated mRNA Decay Activity. Methods in Molecular Biology, 2018, 1720, 187-204.	0.4	2
142	Sensors for Caspase Activities. Russian Journal of Bioorganic Chemistry, 2018, 44, 645-652.	0.3	2
143	Microscopic model of optical potential for testing the 12,14Be+p elastic scattering at 700 Mev. EPJ Web of Conferences, 2019, 204, 09003.	0.1	2
144	Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part I. Acta Naturae, 2021, 13, 52-64.	1.7	2

#	Article	IF	Citations
145	Persistence of plasmids targeted by CRISPR interference in bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114905119.	3.3	2
146	A Natural Fluorescent Protein That Changes Its Fluorescence Color during Maturation. Russian Journal of Bioorganic Chemistry, 2003, 29, 325-329.	0.3	1
147	Green-Red Flashers to Accelerate Biology. Chemistry and Biology, 2011, 18, 1202-1204.	6.2	1
148	The slow fade of cell fluorescence. Nature Photonics, 2012, 6, 641-643.	15.6	1
149	Common fluorescent proteins for single-molecule localization microscopy. , 2015, , .		1
150	Three-dimensional structure of a pH-dependent fluorescent protein WasCFP with a tryptophan based deprotonated chromophore. Russian Journal of Bioorganic Chemistry, 2016, 42, 612-618.	0.3	1
151	Fluorescent Protein-Based Quantification of Alternative Splicing of a Target Cassette Exon in Mammalian Cells. Methods in Enzymology, 2016, 572, 255-268.	0.4	1
152	Green fluorescent protein with tryptophan-based chromophore stable at low pH. Russian Journal of Bioorganic Chemistry, 2017, 43, 220-222.	0.3	1
153	Artificial Electron-transport Chains Based on Green Fluorescent Protein. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 126, 102-105.	0.2	1
154	Spotlight on bioluminescence research. Biochemical and Biophysical Research Communications, 2019, 520, 683-684.	1.0	1
155	Chapter 35. Chromophore-Assisted Light Inactivation: A Powerful Tool to Study Protein Functions. Comprehensive Series in Photochemical and Photobiological Sciences, 2016, , 185-203.	0.3	1
156	NATURAL ANIMAL COLORATION CAN BE DETERMINED BY A NON-FLUORESCENT GFP HOMOLOG. , 2001, , .		1
157	Fluorescence imaging of actin cytoskeleton changes in cancer cells upon chemotherapy. Bulletin of Russian State Medical University, 2016, , 14-18.	0.3	1
158	Multiparametric analysis of cisplatin-induced changes in cancer cells using FLIM. , 2018, , .		1
159	Increasing the Fluorescence Brightness of Superphotostable EGFP Mutant by Introducing Mutations That Block Chromophore Protonation. Russian Journal of Bioorganic Chemistry, 2020, 46, 1229-1241.	0.3	1
160	Title is missing!. Russian Journal of Bioorganic Chemistry, 2002, 28, 274-277.	0.3	0
161	Fluorescence enhancement of asCP595 is due to consecutive absorbance of two photons., 2004, 5329, 73.		O
162	Using photoactivatable GFPs to study protein dynamics and function. , 2005, , .		0

#	Article	IF	CITATIONS
163	Selective Suppression of Polymerase Chain Reaction and Its Most Popular Applications. , 2007, , 29-51.		O
164	KillerRed and miniSOG as genetically encoded photosensitizers for photodynamic therapy of cancer. Proceedings of SPIE, 2013, , .	0.8	O
165	Common fluorescent proteins for single-molecule localization microscopy. Proceedings of SPIE, 2015,	0.8	O
166	Genetically encoded sensors and fluorescence microscopy for anticancer research., 2017,,.		0
167	Live-cell nanoscopy enabled with transient labeling and the control of fluorophore blinking. EPJ Web of Conferences, 2018, 190, 03008.	0.1	O
168	Amino acid residue at the 165th position tunes EYFP chromophore maturation. A structure-based design. Computational and Structural Biotechnology Journal, 2021, 19, 2950-2959.	1.9	0
169	FLIM Indicators for Quantitative Measurement of pH. Engineering Proceedings, 2021, 6, 33.	0.4	O
170	NowGFP: a green fluorescent protein with an anionic tryptophan-based chromophore. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s200-s200.	0.0	О
171	A Surprising Photoactivity of Blue Fluorescent Protein TagBFP Allows for Super-Resolution Microscopy. Sovremennye Tehnologii V Medicine, 2018, 10, 35.	0.4	O
172	Dendra2-tagged Lifeact and MAP4 as exchangeable probes for single-molecule fluorescence imaging of cytoskeleton in live cells. , 2018 , , .		0
173	Functional Imaging and Treatment of Tumors with New Fluorescent Proteins. , 2019, , .		O
174	The Jellyfish <i>Aequorea</i> and Other Luminous Coelenterates., 2019,, 95-175.		O
175	Computational redesign of a fluorogen activating protein with Rosetta. PLoS Computational Biology, 2021, 17, e1009555.	1.5	O
176	Intermembrane oligomerization of SARS-CoV-2 M-protein: possible role in viral budding. Bulletin of Russian State Medical University, 2022, , .	0.3	0