
Michel Daudon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2320165/publications.pdf Version: 2024-02-01

MICHEL DALIDON

#	Article	IF	CITATIONS
1	Whitlockite structures in kidney stones indicate infectious origin: a scanning electron microscopy and Synchrotron Radiation investigation. Comptes Rendus Chimie, 2022, 25, 343-354.	0.2	15
2	Opportunities given by density functional theory in pathological calcifications. Comptes Rendus Chimie, 2022, 25, 209-218.	0.2	7
3	Using micro computed tomographic imaging for analyzing kidney stones. Comptes Rendus Chimie, 2022, 25, 61-72.	0.2	14
4	Crystal size in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>μ</mml:mi>crystalline pathologies and its clinical implication. Comptes Rendus Chimie, 2022, 25, 133-147.</mml:math 	0.2	10
5	Towards automatic recognition of pure and mixed stones using intraâ€operative endoscopic digital images. BJU International, 2022, 129, 234-242.	1.3	17
6	Scanning electron microscopy—a powerful imaging technique for the clinician. Comptes Rendus Chimie, 2022, 25, 37-60.	0.2	14
7	Randall's plaque as the origin of idiopathic calcium oxalate stone formation: an update. Comptes Rendus Chimie, 2022, 25, 373-391.	0.2	4
8	The crucial contribution of X-ray fluorescence spectroscopy in medicine. Comptes Rendus Chimie, 2022, 25, 165-188.	0.2	6
9	Raman opportunities in the field of pathological calcifications. Comptes Rendus Chimie, 2022, 25, 83-103.	0.2	9
10	Drug-induced nephrolithiasis and crystalluria: theÂparticular case of the sulfasalazine derivatives. Comptes Rendus Chimie, 2022, 25, 295-306.	0.2	3
11	Pathologies related to abnormal deposits in dermatology: a physico-chemical approach. Comptes Rendus Chimie, 2022, 25, 445-476.	0.2	10
12	Endoscopic in-situ recognition of urinary stones during LASER-induced stone fragmentation: a modern, effective and essential approach in the diagnostic process in urolithiasis. Comptes Rendus Chimie, 2022, 25, 407-416.	0.2	1
13	Evaluation and understanding of automated urinary stone recognition methods. BJU International, 2022, 130, 786-798.	1.3	11
14	How Reliable Is Endoscopic Stone Recognition? A Comparison Between Visual Stone Identification and Formal Stone Analysis. Journal of Endourology, 2022, 36, 1362-1370.	1.1	4
15	Thulium Fiber Laser's Dust for Stone Composition Analysis: Is It Enough? A Pilot Study. Journal of Endourology, 2022, 36, 1468-1474.	1.1	4
16	Toward improved endoscopic examination of urinary stones: a concordance study between endoscopic digital pictures vs microscopy. BJU International, 2021, 128, 319-330.	1.3	20
17	Thulium fiber laser: ready to dust all urinary stone composition types?. World Journal of Urology, 2021, 39, 1693-1698.	1.2	55
18	What is the exact definition of stone dust? An in vitro evaluation. World Journal of Urology, 2021, 39, 187-194.	1.2	35

#	Article	IF	CITATIONS
19	Classification of the renal papillary abnormalities by flexible ureteroscopy: evaluation of the 2016 version and update. World Journal of Urology, 2021, 39, 177-185.	1.2	11
20	Classification of Stones According to Michel Daudon: A Narrative Review. European Urology Focus, 2021, 7, 13-21.	1.6	33
21	Cystinuria: clinical practice recommendation. Kidney International, 2021, 99, 48-58.	2.6	58
22	Silicone-hydrocoated ureteral stents encrustation and biofilm formation after 3-week dwell time: results of a prospective randomized multicenter clinical study. World Journal of Urology, 2021, 39, 3623-3629.	1.2	13
23	Amoxicillin crystalluria is associated with acute kidney injury in patients treated for acute infective endocarditis. Nephrology Dialysis Transplantation, 2021, 36, 1955-1958.	0.4	8
24	In Search of an Efficient Complexing Agent for Oxalates and Phosphates: A Quantum Chemical Study. Nanomaterials, 2021, 11, 1763.	1.9	8
25	Nanometric Chemical Speciation of Abnormal Deposits in Kidney Biopsy: Infrared-Nanospectroscopy Reveals Heterogeneities within Vancomycin Casts. Analytical Chemistry, 2020, 92, 7388-7392.	3.2	18
26	Vitamin D and Calcium Supplementation Accelerates Randall's Plaque Formation in a Murine Model. American Journal of Pathology, 2019, 189, 2171-2180.	1.9	24
27	Daily Green Tea Infusions in Hypercalciuric Renal Stone Patients: No Evidence for Increased Stone Risk Factors or Oxalate-Dependent Stones. Nutrients, 2019, 11, 256.	1.7	15
28	RE: Geobiology reveals how human kidney stones dissolve in vivo (by: Sivaguru et al. 2018). World Journal of Urology, 2019, 37, 2543-2543.	1.2	3
29	Stone composition independently predicts stone size in 18,029 spontaneously passed stones. World Journal of Urology, 2019, 37, 2493-2499.	1.2	9
30	Adverse events associated with currently used medical treatments for cystinuria and treatment goals: results from a series of 442 patients in France. BJU International, 2019, 124, 849-861.	1.3	30
31	Pseudoxanthoma Elasticum, Kidney Stones and Pyrophosphate: From a Rare Disease to Urolithiasis and Vascular Calcifications. International Journal of Molecular Sciences, 2019, 20, 6353.	1.8	19
32	Fragments and dust after Holmium laser lithotripsy with or without "Moses technology― How are they different?. Journal of Biophotonics, 2019, 12, e201800227.	1.1	42
33	Delayed ileal perforation from sodium polystyreneÂsulfonate. Kidney International, 2018, 93, 1251-1252.	2.6	8
34	Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis, 2018, 46, 459-470.	1.2	68
35	Drug-Induced Kidney Stones and Crystalline Nephropathy: Pathophysiology, Prevention and Treatment. Drugs, 2018, 78, 163-201.	4.9	110
36	Necrotizing Infundibular Crystalline Folliculitis: An Unusual Clinical Presentation and Demonstration of the Presence of Calcium Palmitate. American Journal of Dermatopathology, 2018, 40, e9-e11.	0.3	4

#	Article	IF	CITATIONS
37	Vitamin D, Hypercalciuria and Kidney Stones. Nutrients, 2018, 10, 366.	1.7	68
38	Vancomycin-Associated Cast Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 1723-1728.	3.0	112
39	Endoscopic description of renal papillary abnormalities in stone disease by flexible ureteroscopy: a proposed classification of severity and type. World Journal of Urology, 2016, 34, 1575-1582.	1.2	18
40	Nephrotoxicity induced by drugs: The case of foscarnet and atazanavir—A SEM and μFTIR investigation. Comptes Rendus Chimie, 2016, 19, 1565-1572.	0.2	15
41	Respective influence of calcium and oxalate urine concentration on the formation of calcium oxalate monohydrate or dihydrate crystals. Comptes Rendus Chimie, 2016, 19, 1504-1513.	0.2	48
42	Crystalluria analysis improves significantly etiologic diagnosis and therapeutic monitoring of nephrolithiasis. Comptes Rendus Chimie, 2016, 19, 1514-1526.	0.2	27
43	Calcium and vitamin D have a synergistic role in a rat model of kidney stone disease. Kidney International, 2016, 90, 809-817.	2.6	30
44	Comprehensive morpho-constitutional analysis of urinary stones improves etiological diagnosis and therapeutic strategy of nephrolithiasis. Comptes Rendus Chimie, 2016, 19, 1470-1491.	0.2	89
45	Topography, Composition and Structure of Incipient Randall Plaque at the Nanoscale Level. Journal of Urology, 2016, 196, 1566-1574.	0.2	43
46	Randall's plaque and kidney stones: Recent advances and future challenges. Comptes Rendus Chimie, 2016, 19, 1456-1460.	0.2	22
47	How to identify sulfamethoxazole crystals in the urine. Clinica Chimica Acta, 2016, 452, 106-108.	0.5	13
48	Tolvaptan might prevent kidney stone formation. Nature Reviews Urology, 2016, 13, 130-131.	1.9	2
49	Quality Assessment of Urinary Stone Analysis: Results of a Multicenter Study of Laboratories in Europe. PLoS ONE, 2016, 11, e0156606.	1.1	37
50	Calcium Phosphate Stone Morphology Can Reliably Predict Distal Renal Tubular Acidosis. Journal of Urology, 2015, 193, 1564-1569.	0.2	52
51	Randall's plaque as the origin of calcium oxalate kidney stones. Urolithiasis, 2015, 43, 5-11.	1.2	82
52	CKD and Its Risk Factors among Patients with Cystinuria. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 842-851.	2.2	71
53	Demographics and Characterization of 10,282 Randall Plaque-Related Kidney Stones. Medicine (United) Tj ETQq1	1.0,7843 0.4	14,ggBT /Cve
54	High Prevalence of Opaline Silica in Urinary Stones From Burkina Faso. Urology, 2015, 86, 1090-1096.	0.5	12

#	Article	IF	CITATIONS
55	Intravascular Foscarnet Crystal Precipitation Causing Multiorgan Failure. American Journal of Kidney Diseases, 2015, 65, 152-155.	2.1	9
56	The Case A crystal-clear diagnosis: acute kidney injury in a patient with suspected meningoencephalitis. Kidney International, 2014, 86, 1065-1066.	2.6	16
57	Clinical Features and Risk Factors for Atazanavir (ATV)-Associated Urolithiasis: A Case-Control Study. PLoS ONE, 2014, 9, e112836.	1.1	10
58	High levels of atazanavir and darunavir in urine and crystalluria in asymptomatic patients. Journal of Antimicrobial Chemotherapy, 2013, 68, 1850-1856.	1.3	36
59	Stone Composition and Morphology: A Window on Etiology. , 2012, , 113-140.		19
60	Chronic Interstitial Nephritis in An HIV Type-1-Infected Patient Receiving Ritonavir-Boosted Atazanavir. Antiviral Therapy, 2011, 16, 119-121.	0.6	31
61	Composition and morphology of phosphate stones and their relation with etiology. Urological Research, 2010, 38, 459-467.	1.5	100
62	Decreased Kidney Function and Crystal Deposition in the Tubules After Kidney Transplant. American Journal of Kidney Diseases, 2010, 56, 585-590.	2.1	28
63	Stone Formation and Pregnancy: Pathophysiological Insights Gained From Morphoconstitutional Stone Analysis. Journal of Urology, 2010, 183, 1412-1416.	0.2	51
64	Urolithiasis in HIV-Positive Patients Treated with Atazanavir. Clinical Infectious Diseases, 2007, 45, e105-e108.	2.9	88
65	Efavirenz urolithiasis. Aids, 2007, 21, 1992.	1.0	23
66	Atazanavir crystal nephropathy. Aids, 2007, 21, 2357-2358.	1.0	55
67	Influence of body size on urinary stone composition in men and women. Urological Research, 2006, 34, 193-199.	1.5	176
68	Ciprofloxacin crystalluria. Nephrology Dialysis Transplantation, 2006, 21, 2982-2983.	0.4	20
69	Type 2 Diabetes Increases the Risk for Uric Acid Stones. Journal of the American Society of Nephrology: JASN, 2006, 17, 2026-2033.	3.0	274
70	Can ureteral stent encrustation analysis predict urinary stone composition?. Urology, 2005, 66, 246-251.	0.5	24
71	Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach. Urological Research, 2004, 32, 241-7.	1.5	189
72	Drug-Induced Renal Calculi. Drugs, 2004, 64, 245-275.	4.9	131

#	Article	IF	CITATIONS
73	Clinical Value of Crystalluria and Quantitative Morphoconstitutional Analysis of Urinary Calculi. Nephron Physiology, 2004, 98, p31-p36.	1.5	101
74	Amoxycillin, a rare but possible cause of crystalluria. Nephrology Dialysis Transplantation, 2003, 18, 212-214.	0.4	44
75	Indinavirâ€Induced Cholelithiasis in a Patient Infected with Human Immunodeficiency Virus. Clinical Infectious Diseases, 2002, 35, e57-e59.	2.9	15
76	MEDICAL TREATMENT OF CYSTINURIA: CRITICAL REAPPRAISAL OF LONG-TERM RESULTS. Journal of Urology, 2000, 163, 1419-1423.	0.2	158
77	Crystalline Phase Differentiation in Urinary Calcium Phosphate and Magnesium Phosphate Calculi. Scandinavian Journal of Urology and Nephrology, 1999, 33, 299-305.	1.4	64
78	Fourier Transform Infrared Microscopy Identification of Crystal Deposits in Tissues: <i>Clinical Importance in Various Pathologies</i> . American Journal of Clinical Pathology, 1996, 105, 576-582.	0.4	47
79	Chronic Renal Failure Secondary to 2,8-Dihydroxyadenine Deposition: The First Report of Recurrence in a Kidney Transplant. American Journal of Kidney Diseases, 1994, 24, 104-107.	2.1	50
80	Urolithiasis in Patients with End Stage Renal Failure. Journal of Urology, 1992, 147, 977-980.	0.2	29
81	Piridoxilate-Induced Calcium Oxalate Calculi: A New Drug-Induced Metabolic Nephrolithiasis. Journal of Urology, 1987, 138, 258-260.	0.2	20
82	Physicochemistry in medicine: some selected examples. Journal of Spectral Imaging, 0, , .	0.0	3