Simcha Srebnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2319277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Competing Effects of Hydration and Cation Complexation in Single-Chain Alginate. Biomacromolecules, 2022, 23, 1949-1957.	2.6	8
2	Expanding carbon capture capacity: uncovering additional CO ₂ adsorption sites in imine-linked porous organic cages. Physical Chemistry Chemical Physics, 2021, 23, 10311-10320.	1.3	12
3	Revisiting Cation Complexation and Hydrogen Bonding of Single-Chain Polyguluronate Alginate. Biomacromolecules, 2021, 22, 4027-4036.	2.6	13
4	United-Atom Molecular Dynamics Study of the Mechanical and Thermomechanical Properties of an Industrial Epoxy. Polymers, 2021, 13, 3443.	2.0	5
5	Unexpected hydroxide ion structure and properties at low hydration. Journal of Molecular Liquids, 2020, 313, 113485.	2.3	25
6	Highly Efficient and Waterâ€Insensitive Selfâ€Healing Elastomer for Wet and Underwater Electronics. Advanced Functional Materials, 2020, 30, 1910196.	7.8	103
7	Negative Pressure within a Liquid–Fluid Interface Determines Its Thickness. Langmuir, 2020, 36, 7943-7947.	1.6	6
8	Prediction of the relaxation modulus of a fluoroelastomer using molecular dynamics simulation. Chemical Engineering Science, 2020, 225, 115786.	1.9	4
9	Effect of Ammonium Cations on the Diffusivity and Structure of Hydroxide Ions in Low Hydration Media. Journal of Physical Chemistry C, 2019, 123, 27355-27362.	1.5	17
10	Effect of Carbonate Anions on Quaternary Ammonium-Hydroxide Interaction. Journal of Physical Chemistry C, 2019, 123, 15956-15962.	1.5	17
11	Thermodynamic, structural, and mechanical properties of fluoropolymers from molecular dynamics simulation: Comparison of force fields. Chemical Engineering Science, 2019, 205, 332-340.	1.9	8
12	The Relation between α-Helical Conformation and Amyloidogenicity. Biophysical Journal, 2018, 114, 1869-1877.	0.2	5
13	The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment. Journal of Power Sources, 2018, 375, 351-360.	4.0	179
14	Coarse-Grained Simulation of Protein-Imprinted Hydrogels. Journal of Physical Chemistry B, 2018, 122, 7091-7101.	1.2	12
15	Molecular Simulation of Quaternary Ammonium Solutions at Low Hydration Levels. Journal of Physical Chemistry C, 2018, 122, 11204-11213.	1.5	43
16	Simulation of osmotic pressure across an amorphous semipermeable membrane. Journal of Membrane Science, 2018, 563, 183-190.	4.1	7
17	The selectivity of proteinâ€imprinted gels and its relation to protein properties: A computer simulation study. Journal of Molecular Recognition, 2017, 30, e2607.	1.1	3
18	Sequence-dependent association of alginate with sodium and calcium counterions. Carbohydrate Polymers, 2017, 157, 1144-1152.	5.1	16

SIMCHA SREBNIK

#	Article	IF	CITATIONS
19	A closer look into the α-helix basin. Scientific Reports, 2016, 6, 38341.	1.6	23
20	Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules, 2016, 17, 2160-2167.	2.6	376
21	Comparison of descriptors for predicting selectivity of proteinâ€imprinted polymers. Journal of Molecular Recognition, 2016, 29, 391-400.	1.1	6
22	Cytosine derivatized bis(2,2′-bithienyl)methane molecularly imprinted polymer for selective recognition of 6-thioguanine, an antitumor drug. Biosensors and Bioelectronics, 2015, 70, 153-160.	5.3	41
23	Sugar stereochemistry effects on water structure and on protein stability: The templating concept. Food Hydrocolloids, 2015, 48, 27-37.	5.6	23
24	Simulation of Protein-Imprinted Polymers. 3. Imprinting Selectivity. Journal of Physical Chemistry B, 2011, 115, 14469-14474.	1.2	19
25	Self-assembly of charged particles on nanotubes and the emergence of particle rings, chains, ribbons and chiral sheets. Soft Matter, 2011, 7, 6897.	1.2	12
26	A brief review of coarseâ€grained and other computational studies of molecularly imprinted polymers. Journal of Molecular Recognition, 2011, 24, 883-891.	1.1	25
27	Structural Characterization of Proteinâ€Imprinted Gels Using Lattice Monte Carlo Simulation. Macromolecular Symposia, 2010, 291-292, 258-270.	0.4	9
28	Simulation of Thin Film Membranes Formed by Interfacial Polymerization. Langmuir, 2010, 26, 299-306.	1.6	61
29	Simulation of Protein-Imprinted Polymers. 2. Imprinting Efficiency. Journal of Physical Chemistry B, 2010, 114, 16744-16751.	1.2	15
30	Simulation of Protein-Imprinted Polymers. 1. Imprinted Pore Properties. Journal of Physical Chemistry B, 2010, 114, 107-114.	1.2	24
31	Diffusion enhancement in composites of nanotubes and porous structures. Molecular Simulation, 2009, 35, 100-108.	0.9	1
32	Physical association of polymers with nanotubes. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2711-2718.	2.4	13
33	Conformational behavior of polymers adsorbed on nanotubes. Journal of Chemical Physics, 2008, 128, 144901.	1.2	58
34	Vector Imitation Model of Semiflexible Polymers:Â Application to Polymer Adsorbed on a Spherical Particle. Macromolecules, 2007, 40, 6432-6438.	2.2	6
35	Monte Carlo simulation of polymer wrapping of nanotubes. Chemical Physics Letters, 2007, 444, 96-100.	1.2	67
36	Factors Contributing to Binding-Site Imperfections in Imprinted Polymers. Chemistry of Materials, 2006, 18, 657-663.	3.2	58

SIMCHA SREBNIK

#	Article	IF	CITATIONS
37	Conformational behavior of semi-flexible polymers confined to a cylindrical surface. Chemical Physics Letters, 2006, 430, 84-88.	1.2	47
38	Phase behavior of physically cross-linked asymmetric random heteropolymers. Physical Review E, 2005, 72, 051802.	0.8	0
39	Theoretical Investigation of the Imprinting Efficiency of Molecularly Imprinted Polymers. Chemistry of Materials, 2004, 16, 883-888.	3.2	24
40	Theoretical Investigation of Imprinted Crosslinked Silicates. Journal of Sol-Gel Science and Technology, 2003, 26, 107-113.	1.1	11
41	Toward establishing criteria for polymer imprinting using mean-field theory. Journal of Chemical Physics, 2002, 116, 10967-10972.	1.2	21
42	Pore Size Distribution Induced by Microphase Separation:Â Effect of the Leaving Group during Polycondensation. Chemistry of Materials, 2001, 13, 811-816.	3.2	21
43	Solvent effects on heteropolymer adsorption and freezing. Journal of Chemical Physics, 2001, 114, 9179-9183.	1.2	10