Satyajit Mayor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2319021/publications.pdf

Version: 2024-02-01

		38742	53230
86	13,717	50	85
papers	citations	h-index	g-index
110	110	110	14860
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Formin nanoclustering-mediated actin assembly during plant flagellin and DSF signaling. Cell Reports, 2021, 34, 108884.	6.4	25
2	Distinct actin-dependent nanoscale assemblies underlie the dynamic and hierarchical organization of E-cadherin. Current Biology, 2021, 31, 1726-1736.e4.	3.9	19
3	Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nature Communications, 2021, 12, 3675.	12.8	27
4	Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors. PLoS Pathogens, 2021, 17, e1009706.	4.7	42
5	"Viscotaxis― directed migration of mesenchymal stem cells in response to loss modulus gradient. Acta Biomaterialia, 2021, 135, 356-367.	8.3	16
6	Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis. Nature Cell Biology, 2021, 23, 1073-1084.	10.3	34
7	Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma membrane. Molecular Biology of the Cell, 2020, 31, 561-579.	2.1	38
8	Myosin II Filament Dynamics in Actin Networks Revealed with Interferometric Scattering Microscopy. Biophysical Journal, 2020, 118, 1946-1957.	0.5	14
9	Stratification relieves constraints from steric hindrance in the generation of compact actomyosin asters at the membrane cortex. Science Advances, 2020, 6, eaay6093.	10.3	14
10	Toward a new picture of the living plasma membrane. Protein Science, 2020, 29, 1355-1365.	7.6	48
11	The bacterial quorum sensing signal DSF hijacks <i>Arabidopsis thaliana</i> sterol biosynthesis to suppress plant innate immunity. Life Science Alliance, 2020, 3, e202000720.	2.8	23
12	Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annual Review of Cell and Developmental Biology, 2019, 35, 55-84.	9.4	77
13	Phosphorylation of nephrin induces phase separated domains that move through actomyosin contraction. Molecular Biology of the Cell, 2019, 30, 2996-3012.	2.1	30
14	Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading. Cell, 2019, 177, 1738-1756.e23.	28.9	99
15	Recent advances in clathrin-independent endocytosis. F1000Research, 2019, 8, 138.	1.6	27
16	A composition-dependent molecular clutch between T cell signaling condensates and actin. ELife, 2019, 8, .	6.0	86
17	Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell, 2018, 172, 305-317.e10.	28.9	170
18	Wnt and Hedgehog: Secretion of Lipid-Modified Morphogens. Trends in Cell Biology, 2018, 28, 157-170.	7.9	58

#	Article	IF	Citations
19	Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nature Communications, 2018, 9, 4217.	12.8	106
20	Quantitative Control of GPCR Organization and Signaling by Endocytosis in Epithelial Morphogenesis. Current Biology, 2018, 28, 1570-1584.e6.	3.9	43
21	Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nature Communications, 2018, 9, 1835.	12.8	74
22	A DNA-Based T Cell Receptor Reveals a Role for Receptor Clustering in Ligand Discrimination. Cell, 2017, 169, 108-119.e20.	28.9	159
23	The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nature Reviews Molecular Cell Biology, 2017, 18, 361-374.	37.0	1,471
24	Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10648-10653.	7.1	95
25	Spatio-temporal kinetics of wingless trafficking and signalling in Drosophila wing imaginal discs. Mechanisms of Development, 2017, 145, S100.	1.7	0
26	Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration. Nature Communications, 2017, 8, 2047.	12.8	83
27	Endocytosis of Wingless via a dynamin-independent pathway is necessary for signaling in <i>Drosophila</i> wing discs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6993-E7002.	7.1	38
28	Cortical actin and the plasma membrane: inextricably intertwined. Current Opinion in Cell Biology, 2016, 38, 81-89.	5.4	98
29	Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1645-54.	7.1	131
30	GPI-anchored protein organization and dynamics at the cell surface. Journal of Lipid Research, 2016, 57, 159-175.	4.2	96
31	Current approaches to studying membrane organization. F1000Research, 2015, 4, 1380.	1.6	21
32	Live Cell Plasma Membranes Do Not Exhibit a Miscibility Phase Transition over a Wide Range of Temperatures. Journal of Physical Chemistry B, 2015, 119, 4450-4459.	2.6	53
33	The shifting geography and language of cell biology. Journal of Cell Biology, 2015, 209, 323-325.	5.2	1
34	Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion. Molecular Biology of the Cell, 2015, 26, 4700-4717.	2.1	33
35	Physical principles of membrane remodelling during cell mechanoadaptation. Nature Communications, 2015, 6, 7292.	12.8	91
36	Salt-Induced Remodeling of Spatially Restricted Clathrin-Independent Endocytic Pathways in Arabidopsis Root. Plant Cell, 2015, 27, 1297-1315.	6.6	66

#	Article	IF	Citations
37	Transbilayer Lipid Interactions Mediate Nanoclustering of Lipid-Anchored Proteins. Cell, 2015, 161, 581-594.	28.9	333
38	Building endocytic pits without clathrin. Nature Reviews Molecular Cell Biology, 2015, 16, 311-321.	37.0	175
39	Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin. Molecular Biology of the Cell, 2015, 26, 4033-4045.	2.1	76
40	Homo-FRET Imaging Highlights the Nanoscale Organization of Cell Surface Molecules. Methods in Molecular Biology, 2015, 1251, 151-173.	0.9	12
41	Tailor-Made Ezrin Actin Binding Domain to Probe Its Interaction with Actin In-Vitro. PLoS ONE, 2015, 10, e0123428.	2.5	7
42	Population Distribution Analyses Reveal a Hierarchy of Molecular Players Underlying Parallel Endocytic Pathways. PLoS ONE, 2014, 9, e100554.	2.5	17
43	Bilayer registry in a multicomponent asymmetric membrane: Dependence on lipid composition and chain length. Journal of Chemical Physics, 2014, 141, 064903.	3.0	27
44	Exploiting Cell-To-Cell Variability To Detect Cellular Perturbations. PLoS ONE, 2014, 9, e90540.	2.5	12
45	Active organization of membrane constituents in living cells. Current Opinion in Cell Biology, 2014, 29, 126-132.	5.4	97
46	Synthesis of non-hydrolysable mimics of glycosylphosphatidylinositol (GPI) anchors. Organic and Biomolecular Chemistry, 2014, 12, 1163.	2.8	8
47	Clathrin-Independent Pathways of Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016758-a016758.	5.5	394
48	PSF decomposition of nanoscopy images via Bayesian analysis unravels distinct molecular organization of the cell membrane. Scientific Reports, 2014, 4, 4354.	3.3	20
49	hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins. Nature Communications, 2013, 4, 1361.	12.8	129
50	Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules. Cell, 2012, 149, 1353-1367.	28.9	340
51	Dynamic Imaging of Homo-FRET in Live Cells by Fluorescence Anisotropy Microscopy. Methods in Enzymology, 2012, 505, 291-327.	1.0	47
52	Need Tension Relief Fast? Try Caveolae. Cell, 2011, 144, 323-324.	28.9	15
53	Lysosomal Membrane Protein Composition, Acidic pH and Sterol Content are Regulated via a Lightâ€Dependent Pathway in Metazoan Cells. Traffic, 2011, 12, 1037-1055.	2.7	32
54	Squishy matter and active chemistry: understanding membrane organization. Nature Cell Biology, 2011, 13, 519-519.	10.3	0

#	Article	IF	CITATIONS
55	Spatiotemporal regulation of chemical reactions by active cytoskeletal remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14825-14830.	7.1	75
56	Cell biology in India: The future needs an international perspective. Nature Cell Biology, 2011, 13, 1385-1385.	10.3	0
57	Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Current Opinion in Cell Biology, 2010, 22, 519-527.	5.4	171
58	Endocytosis unplugged: multiple ways to enter the cell. Cell Research, 2010, 20, 256-275.	12.0	455
59	Membrane molecules mobile even after chemical fixation. Nature Methods, 2010, 7, 865-866.	19.0	287
60	Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. Journal of Cell Biology, 2010, 190, 675-691.	5.2	263
61	Induced Domain Formation in Endocytic Invagination, Lipid Sorting, and Scission. Cell, 2010, 142, 507-510.	28.9	70
62	Analysis of Endocytic Pathways in Drosophila Cells Reveals a Conserved Role for GBF1 in Internalization via GEECs. PLoS ONE, 2009, 4, e6768.	2.5	69
63	ARF1 is directly involved in dynamin-independent endocytosis. Nature Cell Biology, 2008, 10, 30-41.	10.3	199
64	PTRF Triggers a Cave In. Cell, 2008, 132, 23-24.	28.9	26
65	Nanoscale Organization of Hedgehog Is Essential for Long-Range Signaling. Cell, 2008, 133, 1214-1227.	28.9	136
66	Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity. Cell, 2008, 135, 1085-1097.	28.9	413
67	Nicotinic acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic pathway. Journal of Cell Biology, 2008, 181, 1179-1193.	5.2	88
68	A Two-Pronged Mechanism for HIV-1 Nef-Mediated Endocytosis of Immune Costimulatory Molecules CD80 and CD86. Cell Host and Microbe, 2007, 1, 37-49.	11.0	36
69	Chirality-Induced Budding: A Raft-Mediated Mechanism for Endocytosis and Morphology of Caveolae?. Biophysical Journal, 2007, 92, 3140-3158.	0.5	42
70	Pathways of clathrin-independent endocytosis. Nature Reviews Molecular Cell Biology, 2007, 8, 603-612.	37.0	1,294
71	Cholesterolâ€6ensitive Cdc42 Activation Regulates Actin Polymerization for Endocytosis via the GEEC Pathway. Traffic, 2007, 8, 702-717.	2.7	166
72	Arf6-independent GPI-anchored Protein-enriched Early Endosomal Compartments Fuse with Sorting Endosomes via a Rab5/Phosphatidylinositol-3′-Kinase–dependent Machinery. Molecular Biology of the Cell, 2006, 17, 3689-3704.	2.1	104

#	Article	IF	CITATIONS
73	Use of Forster's resonance energy transfer microscopy to study lipid rafts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 221-233.	4.1	116
74	Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. Journal of Cell Biology, 2005, 168, 465-476.	5.2	385
75	The Nef Protein of HIV-1 Induces Loss of Cell Surface Costimulatory Molecules CD80 and CD86 in APCs. Journal of Immunology, 2005, 175, 4566-4574.	0.8	101
76	Rafts: Scaleâ€Dependent, Active Lipid Organization at the Cell Surface. Traffic, 2004, 5, 231-240.	2.7	338
77	Sorting GPI-anchored proteins. Nature Reviews Molecular Cell Biology, 2004, 5, 110-120.	37.0	384
78	Folate receptor endocytosis and trafficking. Advanced Drug Delivery Reviews, 2004, 56, 1099-1109.	13.7	255
79	Nanoscale Organization of Multiple GPI-Anchored Proteins in Living Cell Membranes. Cell, 2004, 116, 577-589.	28.9	805
80	deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster. Journal of Cell Biology, 2003, 161, 593-607.	5.2	84
81	Endocytosis of lipid rafts: an identity crisis. Seminars in Cell and Developmental Biology, 2002, 13, 205-214.	5.0	67
82	GPI-Anchored Proteins Are Delivered to Recycling Endosomes via a Distinct cdc42-Regulated, Clathrin-Independent Pinocytic Pathway. Developmental Cell, 2002, 2, 411-423.	7.0	581
83	GPI-anchored proteins are organized in submicron domains at the cell surface. Nature, 1998, 394, 798-801.	27.8	1,153
84	Bafilomycin A1 Treatment Retards Transferrin Receptor Recycling More than Bulk Membrane Recycling. Journal of Biological Chemistry, 1997, 272, 13929-13936.	3.4	156
85	Cell Surface Dynamics of GPI-Anchored Proteins. Advances in Experimental Medicine and Biology, 1997, 419, 355-364.	1.6	52
86	Acto-Myosin Driven Functional Nanoclusters of GPI-Anchored Proteins Are Generated by Integrin Receptor Signaling. SSRN Electronic Journal, 0, , .	0.4	0