
Robert A Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2318957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro and in vivo preclinical venom inhibition assays identify metalloproteinase inhibiting drugs as potential future treatments for snakebite envenoming by Dispholidus typus. Toxicon: X, 2022, 14, 100118.	1.2	12
2	Profiling the Murine Acute Phase and Inflammatory Responses to African Snake Venom: An Approach to Inform Acute Snakebite Pathology. Toxins, 2022, 14, 229.	1.5	3
3	What the snake leaves in its wake: Functional limitations and disabilities among snakebite victims in Ghanaian communities. PLoS Neglected Tropical Diseases, 2022, 16, e0010322.	1.3	6
4	Exploring the Utility of Recombinant Snake Venom Serine Protease Toxins as Immunogens for Generating Experimental Snakebite Antivenoms. Toxins, 2022, 14, 443.	1.5	9
5	Virus-like particles displaying conserved toxin epitopes stimulate polyspecific, murine antibody responses capable of snake venom recognition. Scientific Reports, 2022, 12, .	1.6	5
6	Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science, 2021, 371, 386-390.	6.0	96
7	†The medicine is not for sale': Practices of traditional healers in snakebite envenoming in Ghana. PLoS Neglected Tropical Diseases, 2021, 15, e0009298.	1.3	25
8	Unexpected lack of specialisation in the flow properties of spitting cobra venom. Journal of Experimental Biology, 2021, 224, .	0.8	2
9	Health and economic burden estimates of snakebite management upon health facilities in three regions of southern Burkina Faso. PLoS Neglected Tropical Diseases, 2021, 15, e0009464.	1.3	10
10	Livestock herding and Fulani ethnicity are a combined risk factor for development of early adverse reactions to antivenom treatment: Findings from a cross-sectional study in Nigeria. PLoS Neglected Tropical Diseases, 2021, 15, e0009518.	1.3	0
11	Pathology-specific experimental antivenoms for haemotoxic snakebite: The impact of immunogen diversity on the in vitro cross-reactivity and in vivo neutralisation of geographically diverse snake venoms. PLoS Neglected Tropical Diseases, 2021, 15, e0009659.	1.3	12
12	Delays, fears and training needs: Perspectives of health workers on clinical management of snakebite revealed by a qualitative study in Kitui County, Kenya. Toxicon: X, 2021, 11, 100078.	1.2	10
13	Mapping Enzyme Activity on Tissue by Functional Mass Spectrometry Imaging. Angewandte Chemie, 2020, 132, 3883-3886.	1.6	8
14	Mapping Enzyme Activity on Tissue by Functional Mass Spectrometry Imaging. Angewandte Chemie - International Edition, 2020, 59, 3855-3858.	7.2	35
15	An analysis of preclinical efficacy testing of antivenoms for sub-Saharan Africa: Inadequate independent scrutiny and poor-quality reporting are barriers to improving snakebite treatment and management. PLoS Neglected Tropical Diseases, 2020, 14, e0008579.	1.3	41
16	A therapeutic combination of two small molecule toxin inhibitors provides broad preclinical efficacy against viper snakebite. Nature Communications, 2020, 11, 6094.	5.8	83
17	In Vitro Immunological Cross-Reactivity of Thai Polyvalent and Monovalent Antivenoms with Asian Viper Venoms. Toxins, 2020, 12, 766.	1.5	9
18	Preclinical validation of a repurposed metal chelator as an early-intervention therapeutic for hemotoxic snakebite. Science Translational Medicine, 2020, 12, .	5.8	66

ROBERT A HARRISON

#	Article	IF	CITATIONS
19	Spectral Diversification and Trans-Species Allelic Polymorphism during the Land-to-Sea Transition in Snakes. Current Biology, 2020, 30, 2608-2615.e4.	1.8	20
20	A Decoy-Receptor Approach Using Nicotinic Acetylcholine Receptor Mimics Reveals Their Potential as Novel Therapeutics Against Neurotoxic Snakebite. Frontiers in Pharmacology, 2019, 10, 848.	1.6	33
21	The diversity, evolution and ecology of Salmonella in venomous snakes. PLoS Neglected Tropical Diseases, 2019, 13, e0007169.	1.3	16
22	The time is now: a call for action to translate recent momentum on tackling tropical snakebite into sustained benefit for victims. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2019, 113, 835-838.	0.7	36
23	Evaluation of the geographical utility of Eastern Russell's viper (Daboia siamensis) antivenom from Thailand and an assessment of its protective effects against venom-induced nephrotoxicity. PLoS Neglected Tropical Diseases, 2019, 13, e0007338.	1.3	20
24	Outlining progress since the first International Snakebite Awareness Day and some key challenges for next year. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2019, 113, 577-578.	0.7	3
25	Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Neglected Tropical Diseases, 2019, 13, e0007059.	1.3	249
26	Nuancing the need for speed: temporal health system strengthening in low-income countries. BMJ Global Health, 2019, 4, e001816.	2.0	4
27	Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25745-25755.	3.3	42
28	Defining the pathogenic threat of envenoming by South African shield-nosed and coral snakes (genus) Tj ETQqO 186-198.	0 0 rgBT / 1.2	Overlock 10 7 29
29	Research into the Causes of Venom-Induced Mortality and Morbidity Identifies New Therapeutic Opportunities. American Journal of Tropical Medicine and Hygiene, 2019, 100, 1043-1048.	0.6	6
30	The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms. Communications Biology, 2018, 1, 34.	2.0	89
31	The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. Journal of Proteomics, 2018, 172, 173-189.	1.2	80
32	Analgesic effect of morphine and tramadol in standard toxicity assays in mice injected with venom of the snake Bothrops asper. Toxicon, 2018, 154, 35-41.	0.8	19
33	What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the South African green tree snake (the boomslang), Dispholidus typus. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 814-823.	1.1	56
34	Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise. British Journal of Haematology, 2017, 177, 947-959.	1.2	173
35	Freeze-dried EchiTAb+ICP antivenom formulated with sucrose is more resistant to thermal stress than the liquid formulation stabilized with sorbitol. Toxicon, 2017, 133, 123-126.	0.8	7
36	Snakebite envenoming. Nature Reviews Disease Primers, 2017, 3, 17063.	18.1	608

ROBERT A HARRISON

#	Article	IF	CITATIONS
37	Isolation and characterization of renin-like aspartic-proteases from Echis ocellatus venom. Toxicon, 2017, 137, 92-94.	0.8	1
38	Preclinical antivenom-efficacy testing reveals potentially disturbing deficiencies of snakebite treatment capability in East Africa. PLoS Neglected Tropical Diseases, 2017, 11, e0005969.	1.3	88
39	Stabilising the Integrity of Snake Venom mRNA Stored under Tropical Field Conditions Expands Research Horizons. PLoS Neglected Tropical Diseases, 2016, 10, e0004615.	1.3	7
40	Visual Pigments, Ocular Filters and the Evolution of Snake Vision. Molecular Biology and Evolution, 2016, 33, 2483-2495.	3.5	65
41	Top-down venomics of the East African green mamba, Dendroaspis angusticeps , and the black mamba, Dendroaspis polylepis , highlight the complexity of their toxin arsenals. Journal of Proteomics, 2016, 146, 148-164.	1.2	60
42	Fit for purpose: do we have the right tools to sustain NTD elimination?. BMC Proceedings, 2015, 9, S5.	1.8	5
43	Mass Drug Administration and beyond: how can we strengthen health systems to deliver complex interventions to eliminate neglected tropical diseases?. BMC Proceedings, 2015, 9, S7.	1.8	5
44	A Call for Incorporating Social Research in the Global Struggle against Snakebite. PLoS Neglected Tropical Diseases, 2015, 9, e0003960.	1.3	34
45	Anti-angiogenic activities of snake venom CRISP isolated from Echis carinatus sochureki. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1169-1179.	1.1	23
46	A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming. Bulletin of the World Health Organization, 2014, 92, 526-532.	1.5	60
47	VTBuilder: a tool for the assembly of multi isoform transcriptomes. BMC Bioinformatics, 2014, 15, 389.	1.2	36
48	Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9205-9210.	3.3	253
49	The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20651-20656.	3.3	412
50	Complex cocktails: the evolutionary novelty of venoms. Trends in Ecology and Evolution, 2013, 28, 219-229.	4.2	785
51	The Need for Full Integration of Snakebite Envenoming within a Global Strategy to Combat the Neglected Tropical Diseases: The Way Forward. PLoS Neglected Tropical Diseases, 2013, 7, e2162.	1.3	123
52	Snake Venomics of African Spitting Cobras: Toxin Composition and Assessment of Congeneric Cross-Reactivity of the Pan-African EchiTAb-Plus-ICP Antivenom by Antivenomics and Neutralization Approaches. Journal of Proteome Research, 2011, 10, 1266-1280.	1.8	191
53	Ending the drought: New strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. Journal of Proteomics, 2011, 74, 1735-1767.	1.2	206
54	Research strategies to improve snakebite treatment: Challenges and progress. Journal of Proteomics, 2011, 74, 1768-1780.	1.2	72

ROBERT A HARRISON

#	Article	IF	CITATIONS
55	Gene Tree Parsimony of Multilocus Snake Venom Protein Families Reveals Species Tree Conflict as a Result of Multiple Parallel Gene Loss. Molecular Biology and Evolution, 2011, 28, 1157-1172.	3.5	24
56	Antivenomic Assessment of the Immunological Reactivity of EchiTAb-Plus-ICP, an Antivenom for the Treatment of Snakebite Envenoming in Sub-Saharan Africa. American Journal of Tropical Medicine and Hygiene, 2010, 82, 1194-1201.	0.6	50
57	Pre-Clinical Assays Predict Pan-African Echis Viper Efficacy for a Species-Specific Antivenom. PLoS Neglected Tropical Diseases, 2010, 4, e851.	1.3	89
58	Analysis of camelid antibodies for antivenom development: Neutralisation of venom-induced pathology. Toxicon, 2010, 56, 373-380.	0.8	26
59	Analysis of camelid IgG for antivenom development: Immunoreactivity and preclinical neutralisation of venom-induced pathology by IgG subclasses, and the effect of heat treatment. Toxicon, 2010, 56, 596-603.	0.8	27
60	The Global Snake Bite Initiative: an antidote for snake bite. Lancet, The, 2010, 375, 89-91.	6.3	306
61	Snake Envenoming: A Disease of Poverty. PLoS Neglected Tropical Diseases, 2009, 3, e569.	1.3	426
62	Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genomics, 2009, 10, 564.	1.2	135
63	Molecular characterisation of endogenous snake venom metalloproteinase inhibitors. Biochemical and Biophysical Research Communications, 2008, 365, 650-656.	1.0	85
64	Identification of cDNAs encoding viper venom hyaluronidases: Cross-generic sequence conservation of full-length and unusually short variant transcripts. Gene, 2007, 392, 22-33.	1.0	36
65	Neutralisation of venom-induced haemorrhage by IgG from camels and llamas immunised with viper venom and also by endogenous, non-IgG components in camelid sera. Toxicon, 2006, 47, 364-368.	0.8	55
66	Development of venom toxin-specific antibodies by DNA immunisation: rationale and strategies to improve therapy of viper envenoming. Vaccine, 2004, 22, 1648-1655.	1.7	34
67	The conserved structure of snake venom toxins confers extensive immunological cross-reactivity to to toxin-specific antibody. Toxicon, 2003, 41, 441-449.	0.8	52
68	Novel sequences encoding venom C-type lectins are conserved in phylogenetically and geographically distinct Echis and Bitis viper species. Gene, 2003, 315, 95-102.	1.0	30
69	Simultaneous GeneGun immunisation with plasmids encoding antigen and GM-CSF: significant enhancement of murine antivenom lgG1 titres. Vaccine, 2002, 20, 1702-1706.	1.7	22
70	Antibody from mice immunized with DNA encoding the carboxyl-disintegrin and cysteine-rich domain (JD9) of the haemorrhagic metalloprotease, Jararhagin, inhibits the main lethal component of viper venom. Clinical and Experimental Immunology, 2000, 121, 358-363.	1.1	39
71	DNA immunization with Onchocerca volvulus genes, Ov-tmy-1 and OvB20: serological and parasitological outcomes following intramuscular or GeneGun delivery in a mouse model of Onchocerciasis. Parasite Immunology, 2000, 22, 249-257.	0.7	31
72	DNA immunisation with Onchocerca volvulus chitinase induces partial protection against challenge infection with L3 larvae in mice. Vaccine, 1999, 18, 647-655.	1.7	40