Dong-Sheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2318898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excited states of lutetium oxide and its singly charged cation. Journal of Chemical Physics, 2022, 156, 084303.	1.2	2
2	Water-Soluble Palladium Nanoclusters as Catalysts in Ligand-Free Suzuki–Miyaura Cross-Coupling Reactions. ACS Applied Nano Materials, 2022, 5, 3188-3193.	2.4	3
3	High-Resolution Photoelectron Spectroscopy. , 2021, , 217-240.		0
4	Threshold Ionization Spectroscopy and Theoretical Calculations of LnO (Ln = La and Ce). Journal of Physical Chemistry A, 2021, 125, 1941-1948.	1.1	9
5	Vibronic transitions and spin–orbit coupling of three-membered metallacycles formed by lanthanide-mediated dehydrogenation of dimethylamine. Journal of Chemical Physics, 2021, 155, 034302.	1.2	3
6	Controlled synthesis and characterization of NaYF ₄ :Yb/Er upconverting nanoparticles produced by laser ablation in liquid. Journal of Chemical Physics, 2020, 153, 064701.	1.2	3
7	Spectroscopic and computational characterization of lanthanide-mediated N–H and C–H bond activation of methylamine. Journal of Chemical Physics, 2020, 153, 064304.	1.2	7
8	Soybean-derived blue photoluminescent carbon dots. Beilstein Journal of Nanotechnology, 2020, 11, 606-619.	1.5	28
9	Spin–orbit coupling and vibronic transitions of Ce(C3H4) and Ce(C3H6) formed by the Ce reaction with propene: Mass-analyzed threshold ionization and relativistic quantum computation. Journal of Chemical Physics, 2020, 152, 144304.	1.2	7
10	Nitrogen-induced shift of photoluminescence from green to blue emission for xylose-derived carbon dots. Nano Express, 2020, 1, 020018.	1.2	3
11	Controlled Nitrogen Doping of Graphene Quantum Dots through Laser Ablation in Aqueous Solutions for Photoluminescence and Electrocatalytic Applications. ACS Applied Nano Materials, 2019, 2, 6948-6959.	2.4	54
12	Spin-orbit coupling and vibronic transitions of two Ce(C4H6) isomers probed by mass-analyzed threshold ionization and relativistic quantum computation. Journal of Chemical Physics, 2019, 151, 124307.	1.2	6
13	Conversion of soybean waste to sub-micron porous-hollow carbon spheres for supercapacitor via a reagent and template-free route. Materials Today Energy, 2019, 13, 50-55.	2.5	33
14	La-mediated dehydrogenation and C C bond cleavage of 1,4-pentadiene and 1-pentyne: Spectroscopy and formation of La(C5H6) and La(C3H4) radicals. Journal of Organometallic Chemistry, 2019, 880, 187-195.	0.8	5
15	Lanthanum-mediated dehydrogenation of butenes: Spectroscopy and formation of La(C4H6) isomers. Journal of Chemical Physics, 2018, 148, 044312.	1.2	7
16	Mass-analyzed threshold ionization spectroscopy of lanthanide imide LnNH (Ln = La and Ce) radicals from N–H bond activation of ammonia. Journal of Chemical Physics, 2018, 149, 234301.	1.2	11
17	Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by C—H and C—C bond activation of 1-pentene and 2-pentene. Journal of Chemical Physics, 2018, 149, 034303.	1.2	2
18	Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: Comparison with chemical oxidation, lournal of Colloid and Interface Science, 2018, 527, 132-140.	5.0	117

DONG-SHENG YANG

#	Article	IF	CITATIONS
19	Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by association and carbon-carbon bond cleavage of isoprene. Journal of Chemical Physics, 2018, 148, 194302.	1.2	3
20	Spectroscopic Characterization of Nonconcerted [4 + 2] Cycloaddition of 1,3-Butadiene with Lanthanacyclopropene To Form Lanthanum–Benzene in the Gas Phase. Journal of Physical Chemistry A, 2017, 121, 1233-1239.	1.1	12
21	Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by C—C bond cleavage and coupling of propene. Journal of Chemical Physics, 2017, 146, .	1.2	18
22	Mass-analyzed threshold ionization spectroscopy of lanthanum-hydrocarbon radicals formed by C — H bond activation of propene. Journal of Chemical Physics, 2017, 146, 074305.	1.2	16
23	Low-Energy Photoelectron Imaging Spectroscopy of La _{<i>n</i>} (benzene) (<i>n</i> = 1 and) Tj ET(Qq1_1_0.78	4314 rgBT /
24	Lanthanum-mediated dehydrogenation of 1- and 2-butynes: Spectroscopy and formation of La(C4H4) isomers. Journal of Chemical Physics, 2017, 147, 064303.	1.2	5
25	Spectroscopic Characterization of Lanthanum-Mediated Dehydrogenation and C–C Bond Coupling of Ethylene. Journal of Physical Chemistry A, 2016, 120, 4482-4489.	1.1	22
26	Threshold Ionization and Spin–Orbit Coupling of Ceracyclopropene Formed by Ethylene Dehydrogenation. Journal of Physical Chemistry A, 2016, 120, 6963-6969.	1.1	16
27	La-Activated Bicyclo-oligomerization of Acetylene to Naphthalene. Journal of the American Chemical Society, 2016, 138, 2468-2471.	6.6	35
28	Lanthanum-Mediated C–H Bond Activation of Propyne and Identification of La(C ₃ H ₂) Isomers. Journal of Physical Chemistry A, 2015, 119, 2857-2862.	1.1	17
29	Threshold ionization, structural isomers, and electronic states of M2O2(M = Sc, Y, and La). Journal of Chemical Physics, 2014, 140, 224307.	1.2	13
30	High-Resolution Electron Spectroscopy and Rotational Conformers of Group 6 Metal (Cr, Mo, and W) Bis(mesitylene) Sandwich Complexes. Journal of Physical Chemistry A, 2013, 117, 13336-13344.	1.1	9
31	Binding sites and electronic states of group 3 metal-aniline complexes probed by high-resolution electron spectroscopy. Journal of Chemical Physics, 2013, 138, 224304.	1.2	2
32	High-resolution electron spectroscopy and molecular structures of Cu–(2,2′-bipyridine) and Cu-(4,4′-bipyridine). Canadian Journal of Chemistry, 2013, 91, 613-620.	0.6	2
33	High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: The role of 4 <i>f</i> electrons. Journal of Chemical Physics, 2013, 138, 164307.	1.2	12
34	High-spin electronic states of lanthanide-arene complexes: Nd(benzene) and Nd(naphthalene). Journal of Chemical Physics, 2012, 136, 204311.	1.2	8
35	Mass-analyzed threshold ionization of an excited state of lanthanum dioxide. Journal of Chemical Physics, 2012, 137, 034307.	1.2	7
36	Electronic states and pseudo Jahn-Teller distortion of heavy metal-monobenzene complexes: M(C6H6) (M = Y, La, and Lu). Journal of Chemical Physics, 2012, 136, 134310.	1.2	19

#	Article	IF	Citations
37	Electronic States and Metal–Ligand Bonding of Gadolinium Complexes of Benzene and Cyclooctatetraene. Journal of Physical Chemistry A, 2012, 116, 839-845.	1.1	13
38	Electron Spin Multiplicities of Transition-Metal Aromatic Radicals and Ions: M[C ₆ (CH ₃) ₆] and		
	4		

DONG-SHENG YANG

#	Article	IF	CITATIONS
55	Clamshell Structure of Sc(biphenyl) from High Resolution Photoelectron Spectroscopy. Journal of the American Chemical Society, 2006, 128, 10692-10693.	6.6	18
56	Pulsed-field ionization electron spectroscopy and ab initio calculations of copper-diazine complexes. Journal of Chemical Physics, 2006, 125, 014309.	1.2	8
57	Pulsed-field ionization electron spectroscopy and conformation of copper-diammonia. Journal of Chemical Physics, 2005, 122, 214316.	1.2	12
58	Pulsed-field ionization electron spectroscopy and binding energies of alkali metal-dimethyl ether and -dimethoxyethane complexes. Journal of Chemical Physics, 2005, 123, 014318.	1.2	42
59	Electron-spin multiplicities and molecular structures of neutral and ionic scandium-benzene complexes. Journal of Chemical Physics, 2005, 123, 214306.	1.2	42
60	ZEKE Spectroscopy and Theoretical Calculations of Copperâ^'Methylamine Complexes. Journal of Physical Chemistry A, 2005, 109, 6697-6701.	1.1	12
61	Photoelectron spectroscopy and density functional theory of puckered ring structures of Group 13 metal-ethylenediamine. Journal of Chemical Physics, 2004, 121, 7692.	1.2	9
62	Zero electron kinetic energy photoelectron and threshold photoionization spectroscopy of M-X(CH3)3 (Mâ€,=â€,Ga, In; Xâ€,=â€,P, As). Canadian Journal of Chemistry, 2004, 82, 1067-1076.	0.6	1
63	A Hydrogen-Bond Stabilized Copper Complex:  Cuâ^'Ethylenediamine. Journal of Physical Chemistry A, 2004, 108, 6449-6451.	1.1	14
64	ZEKE spectroscopy of the AgNH3 complex. Chemical Physics Letters, 2003, 372, 627-631.	1.2	14
65	Zero electron kinetic energy photoelectron spectroscopy and density functional theory calculations of gallium–methylamine complexes. Journal of Chemical Physics, 2003, 119, 8882-8889.	1.2	8
66	Photoelectron and photoionization spectroscopy of weakly bound aluminum–methylamine complexes. Journal of Chemical Physics, 2003, 118, 8636-8644.	1.2	10
67	Pulsed-field ionization zero electron kinetic energy spectroscopy and theoretical calculations of copper complexes: Cu–X(CH3)3 (X=N,P,As). Journal of Chemical Physics, 2003, 119, 5406-5413.	1.2	13
68	Ionization and Dissociation Energies of Group 13 Metal Complexes with Group 15 Hydrides. Journal of Physical Chemistry A, 2002, 106, 6941-6944.	1.1	6
69	Zero-electron-kinetic-energy photoelectron spectroscopy of transition-metal—ether complexes: Y-O(CH3)2, Y-O(CD3)2, Y-[O(CH3)2]2, and Y-[O(CD3)2]2. Journal of Chemical Physics, 2002, 117, 8800-8804.	1.2	8
70	Zero electron kinetic energy photoelectron spectroscopy and density functional calculations of Al–P(CH3)3 and Al–As(CH3)3. Journal of Chemical Physics, 2002, 116, 6589-6594.	1.2	10
71	A photoionization and photoelectron study of vibrational and electronic cooling in metal molecular beams. Chemical Physics Letters, 2002, 366, 141-146.	1.2	26
72	Zero electron kinetic energy photoelectron spectroscopy of weakly bound In–NH2CH3, In–NH(CH3)2, and In–N(CH3)3 complexes. Journal of Chemical Physics, 2001, 115, 4565-4572.	1.2	17

DONG-SHENG YANG

#	Article	IF	CITATIONS
73	Photoelectron spectra of metal-containing molecules with resolutions better than 1 meV. Coordination Chemistry Reviews, 2001, 214, 187-213.	9.5	28
74	Spectroscopy and calculations of weakly bound gallium complexes with ammonia and monomethylamine. Journal of Chemical Physics, 2001, 115, 7968-7974.	1.2	19
75	ZEKE spectroscopy of free transition metal clusters. Journal of Electron Spectroscopy and Related Phenomena, 2000, 106, 153-169.	0.8	39
76	Zero Electron Kinetic Energy Spectroscopy and Theoretical Calculations of InNH3. Journal of Physical Chemistry A, 2000, 104, 8178-8182.	1.1	49
77	Zero kinetic energy spectroscopy of AlNH3 complex. Chemical Physics Letters, 1999, 313, 514-518.	1.2	26