Pinaki Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2318783/publications.pdf

Version: 2024-02-01

165 papers	2,175 citations	24 h-index	315616 38 g-index
168	168	168	646
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Lie algebraic approach to effective mass Schrödinger equations. Journal of Physics A, 2002, 35, 3961-3969.	1.6	123
2	Conditionally Exactly Solvable Potentials: A Supersymmetric Construction Method. Annals of Physics, 1998, 270, 155-177.	1.0	103
3	New nonlinear coherent states and some of their nonclassical properties. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 65-68.	1.4	97
4	Conditionally exactly solvable problems and non-linear algebras. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 232, 155-161.	0.9	67
5	Exact solutions of the (2+1) dimensional Dirac equation in a constant magnetic field in the presence of a minimal length. Physical Review D, 2013, 87, .	1.6	67
6	A new class of PT-symmetric Hamiltonians with real spectra. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 281, 305-310.	0.9	50
7	Effective mass SchrĶdinger equation and nonlinear algebras. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 340, 70-73.	0.9	50
8	Conditionally exactly solvable potentials and exceptional orthogonal polynomials. Journal of Mathematical Physics, 2010, 51, .	0.5	47
9	The non-commutative oscillator, symmetry andÂtheÂLandauÂproblem. European Physical Journal C, 2008, 57, 835-839.	1.4	46
10	Gazeau–Klauder coherent state for the Morse potential and some of its properties. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 296, 187-191.	0.9	45
11	Quasi-exact solvability of Dirac–Pauli equation and generalized Dirac oscillators. Annals of Physics, 2004, 312, 161-176.	1.0	44
12	Exact solution of the Klein–Gordon equation in the presence of a minimal length. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1239-1241.	0.9	40
13	Comprehensive analysis of conditionally exactly solvable models. Journal of Mathematical Physics, 2001, 42, 1996.	0.5	39
14	(1+1)-DIMENSIONAL DIRAC EQUATION WITH NON-HERMITIAN INTERACTION. Modern Physics Letters A, 2005, 20, 2377-2385.	0.5	38
15	"Stringy―coherent states inspired by generalized uncertainty principle. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 711, 423-427.	1.5	35
16	Non-linear coherent states associated with conditionally exactly solvable problems. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 257, 113-119.	0.9	34
17	New exact solutions of the non-polynomial oscillator and supersymmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 122, 275-279.	0.9	32
18	symmetry of a conditionally exactly solvable potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 322, 78-83.	0.9	29

#	Article	IF	CITATIONS
19	Phase distribution of nonlinear coherent states. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 341-344.	1.4	28
20	Is the norm always positive?. Journal of Physics A, 2005, 38, L249-L255.	1.6	28
21	An exactly solvable ÂÂ symmetric potential from the Natanzon class. Journal of Physics A, 2003, 36, 7611-7623.	1.6	27
22	Quantum phase transitions in the noncommutative Dirac oscillator. Physical Review A, 2014, 90, .	1.0	27
23	Generation of Exactly Solvable Non-Hermitian Potentials with Real Energies. European Physical Journal D, 2004, 54, 129-138.	0.4	26
24	Information entropy of conditionally exactly solvable potentials. Journal of Mathematical Physics, 2011, 52, .	0.5	25
25	Shifted 1/N expansion approach to the interaction $V(r)=r2+\hat{l}*r2/(1+gr2)$. Journal of Physics A, 1988, 21, 1579-1588.	1.6	24
26	On zero energy states in graphene. Europhysics Letters, 2014, 108, 20004.	0.7	24
27	Generalized Swanson models and their solutions. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 10599-10610.	0.7	22
28	Quantum statistical properties of Gazeau–Klauder coherent state of the anharmonic oscillator. Optics Communications, 2003, 221, 145-152.	1.0	21
29	An analysis of the zero energy states in graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 567-569.	0.9	21
30	Phase properties of even and odd nonlinear coherent states. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 257, 264-268.	0.9	19
31	Quasi-exact solvability of the Pauli equation. Journal of Physics A, 2003, 36, 4617-4628.	1.6	19
32	Shape invariance approach to exact solutions of the Klein–Gordon equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 361, 55-58.	0.9	19
33	Bound states in graphene via Fermi velocity modulation. European Physical Journal Plus, 2017, 132, 1.	1.2	19
34	Noncommutative anisotropic oscillator in a homogeneous magnetic field. Annals of Physics, 2017, 377, 115-124.	1.0	19
35	Construction of zero-energy states in graphene through the supersymmetry formalism. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 365205.	0.7	19
36	On Solutions of Quantum Eigenvalue Problems: A Supersymmetric Approach., 1991, 39, 211-258.		18

#	Article	IF	CITATIONS
37	Quantum phase transitions of the Dirac oscillator in a minimal length scenario. Physical Review D, 2015, 91, .	1.6	18
38	Some solutions of a supersymmetric nonpolynomial oscillator-a comparison between the SWKB and WKB methods. Journal of Physics A, 1988, 21, 1589-1594.	1.6	17
39	Aharonov-Bohm interaction for a deformed non-relativistic spin particle. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 359, 339-342.	1.5	17
40	Anomalous doublets of states in a symmetric quantum model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 290, 249-254.	0.9	17
41	A class of exactly solvable SchrĶdinger equation with moving boundary condition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 2368-2373.	0.9	17
42	Non-hermitian quantum mechanics in non-commutative space. European Physical Journal C, 2009, 60, 157-161.	1.4	17
43	Pseudo-Hermitian generalized Dirac oscillators. Annals of Physics, 2013, 331, 120-126.	1.0	17
44	A note on the \hat{I}^{0} deformed Landau problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 339, 87-89.	1.5	15
45	A generalized nonclassical state of the radiation field and some of its properties. Journal of Physics A, 1997, 30, L719-L723.	1.6	15
46	Coherent states, even and odd coherent states in a finite-dimensional Hilbert space and their properties. Journal of Physics A, 1998, 31, 1307-1317.	1.6	15
47	New Bathonian (Middle Jurassic) ammonite assemblages from Kutch, India. Journal of Asian Earth Sciences, 2007, 30, 629-651.	1.0	15
48	Dirac oscillator in perpendicular magnetic and transverse electric fields. Annals of Physics, 2014, 351, 13-21.	1.0	15
49	Pseudo supersymmetric partners for the generalized Swanson model. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 335306.	0.7	14
50	Bound state in continuum-like solutions in one-dimensional heterostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2580-2583.	0.9	14
51	Conditional electron confinement in graphene via smooth magnetic fields. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 96, 17-22.	1.3	14
52	Generalized Dirac oscillators with position-dependent mass. Europhysics Letters, 2018, 124, 60003.	0.7	14
53	Spherical fullerene molecules under the influence of electric and magnetic fields. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 107, 60-66.	1.3	14
54	Supersymmetry of a spin particle on the real line. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263, 245-249.	0.9	13

#	Article	IF	CITATIONS
55	Bound states of the two-dimensional Dirac equation for an energy-dependent hyperbolic Scarf potential. Journal of Mathematical Physics, 2017, 58, .	0.5	13
56	-symmetric effective mass Schrödinger equations. Journal of Physics A, 2005, 38, 11019-11025.	1.6	12
57	Coherent states of non-Hermitian quantum systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 359, 110-113.	0.9	12
58	\hat{l} expansion for the superpotential. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 143, 202-206.	0.9	11
59	Quasi exactly solvable extension of Calogero model associated with exceptional orthogonal polynomials. Annals of Physics, 2017, 380, 206-212.	1.0	11
60	Question of degenerate states in supersymmetric quantum mechanics. Physical Review D, 1985, 32, 1597-1599.	1.6	10
61	On the construction of supersymmetric quantum mechanical Hamiltonian. Zeitschrift F $\tilde{A}^{1}\!\!/\!4$ r Physik C-Particles and Fields, 1986, 31, 111-114.	1.5	10
62	On exact solutions of the doubly anharmonic oscillator. Journal of Physics A, 1987, 20, 6597-6601.	1.6	10
63	Conditionally exactly solvable potentials and supersymmetric transformations. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 264, 117-123.	0.9	10
64	Spontaneous symmetry breaking and pseudo-supersymmetry. Journal of Physics A, 2006, 39, L377-L384.	1.6	10
65	Study of classical mechanical systems with complex potentials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 452-457.	0.9	10
66	Dirac systems with magnetic field and position-dependent mass: Darboux transformations and equivalence with generalized Dirac oscillators. Annals of Physics, 2021, 431, 168534.	1.0	10
67	Partial algebraization of spectral problems and supersymmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 139, 427-430.	0.9	9
68	Novel perturbation expansion for the Langevin equation. Journal of Statistical Physics, 1991, 64, 395-428.	0.5	9
69	Time dependent nonclassical properties of even and odd nonlinear coherent states. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263, 48-52.	0.9	9
70	Phase properties of a new nonlinear coherent state. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 505-509.	1.4	9
71	Potential algebra approach to position-dependent mass SchrĶdinger equations. Europhysics Letters, 2009, 87, 30003.	0.7	9
72	Modified Kortweg-de Vries equation approach to zero-energy states of graphene. Europhysics Letters, 2015, 112, 47004.	0.7	9

#	Article	IF	CITATIONS
73	Collapse of Landau levels in graphene under uniaxial strain. Materials Research Express, 2019, 6, 125603.	0.8	9
74	Thermodynamics of quantum phase transitions of a Dirac oscillator in a homogenous magnetic field. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 185204.	0.7	9
7 5	SOLUTION OF κ DEFORMED DIRAC EQUATION WITH ANOMALOUS MAGNETIC MOMENT INTERACTION. Modern Physics Letters A, 1995, 10, 1969-1975.	0.5	8
76	DARBOUX TRANSFORMATION FOR THE ONE-DIMENSIONAL STATIONARY DIRAC EQUATION WITH NON-HERMITIAN INTERACTION. International Journal of Modern Physics A, 2006, 21, 5807-5822.	0.5	8
77	Exact solutions of the Fokker–Planck equation from an nth order supersymmetric quantum mechanics approach. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1610-1615.	0.9	8
78	The asymptotic iteration method applied to certain quasinormal modes and non Hermitian systems. Open Physics, 2009, 7, .	0.8	8
79	Continuum states in generalized Swanson models. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 052002.	0.7	8
80	Supersymmetry in option pricing. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 2350-2355.	1.2	8
81	Pseudo Hermitian formulation of the quantum Black–Scholes Hamiltonian. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 2636-2640.	1.2	8
82	Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation. Physical Review E, 2015, 91, 013205.	0.8	8
83	New integral solutions of the non-polynomial oscillator $V(x)=x2+\hat{l}»x2/(1+gx2)$ when $\hat{l}»=2g(2-3g)$. Journal of Physics A, 1987, 20, L1245-L1248.	1.6	7
84	Some observations on the nature of solutions for the interaction $V(x)=x2+(\hat{l})x2/(1+gx2)$). Journal of Physics A, 1990, 23, 1657-1660.	1.6	7
85	Motion of a spin- $\hat{A}\frac{1}{2}$ particle in shape invariant scalar and magnetic fields. Journal of Physics A, 2000, 33, 4159-4167.	1.6	7
86	New exactly solvable isospectral partners for symmetric potentials. Journal of Physics A, 2004, 37, 2509-2518.	1.6	7
87	PT symmetric models with nonlinear pseudosupersymmetry. Journal of Mathematical Physics, 2005, 46, 032102.	0.5	7
88	Construction of the operator for a symmetric model. Journal of Physics A: Mathematical and Theoretical, 2007, 40, F617-F620.	0.7	7
89	Quantum phase transitions of the Dirac oscillator in the anti-Snyder model. Physical Review D, 2015, 92, .	1.6	7
90	Electronic spectrum of spherical fullerene molecules inÂtheÂpresence of generalizedÂmagneticÂfields. European Physical Journal Plus, 2020, 135, 1.	1.2	7

#	Article	IF	Citations
91	Electronic spectrum in 2D Dirac materials under strain. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 121, 114084.	1.3	7
92	Hill determinants, supersymmetry and partial algebraization. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 144, 55-58.	0.9	6
93	Supersymmetric anyon quantum mechanics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 274, 59-64.	1.5	6
94	On the dynamical group of the system of two anyons with Coulomb interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 172, 316-318.	0.9	6
95	Construction of (1+1)-Dimensional Field Models with Exactly Solvable Fluctuation Equations about Classical Finite-Energy Configurations. Annals of Physics, 1997, 256, 302-319.	1.0	6
96	Generalized factorization and isospectral potentials. Physical Review A, 2011, 83, .	1.0	6
97	Generalized harmonic confinement of massless Dirac fermions in (2+1) dimensions. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 102, 66-72.	1.3	6
98	Non-commutativity effects in the Dirac equation in crossed electric and magnetic fields. Europhysics Letters, 2018, 123, 20008.	0.7	6
99	The influence of electric field and geometry on relativistic Landau levels in spheroidal fullerene molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113639.	1.3	6
100	Graphene under uniaxial inhomogeneous strain and an external electric field: Landau levels, electronic, magnetic and optical properties. European Physical Journal B, 2020, $93,1.$	0.6	6
101	Angular momentum quantum backflow in the noncommutative plane. Physical Review A, 2020, 102, .	1.0	6
102	Asymptotic iteration approach to supersymmetric bistable potentials. Chinese Physics B, 2012, 21, 010303.	0.7	5
103	Dirac equation with complex potentials. Modern Physics Letters A, 2014, 29, 1450210.	0.5	5
104	Exact localized solutions of $(1 + 1)$ -dimensional nonlinear Schr \tilde{A} ¶dinger equation with complex ?? symmetric potentials and power-law nonlinearity. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650036.	1.1	5
105	Quantum models with energy-dependent potentials solvable in terms of exceptional orthogonal polynomials. Annals of Physics, 2017, 378, 234-252.	1.0	5
106	$\$ kappa $\$ \hat{I}^{e} -deformed Dirac equation in crossed magnetic and electric fields. European Physical Journal Plus, 2017, 132, 1.	1.2	5
107	Biogeography of Kutch Ammonites During the Latest Jurassic (Tithonian) and a Global Paleobiogeograph Overview., 2007,, 375-395.		5
108	Derivation of a formula in finite-temperature field theory. Physical Review D, 1985, 32, 498-500.	1.6	4

#	Article	IF	CITATIONS
109	Remarks on negative energy states in supersymmetric quantum mechanics. Journal of Physics A, 1988, 21, 3673-3676.	1.6	4
110	Exact Analytical Solutions of the Non Polynomial Oscilator. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1988, 43, 360-362.	0.7	4
111	A GAUSSIAN APPROACH TO SINE GORDON THEORY AT FINITE TEMPERATURE. Modern Physics Letters A, 1989, 04, 2031-2040.	0.5	4
112	On the application of supersymmetric WKB (Wentzel–Kramers–Brillouin) method to quasi-exactly solvable problems. Canadian Journal of Physics, 1991, 69, 1261-1263.	0.4	4
113	q-DEFORMED ALGEBRAS AND THE TWO-ANYON PROBLEM. Modern Physics Letters A, 1996, 11, 1489-1495.	0.5	4
114	Pseudo Hermitian Interactions in the Dirac Equation. Symmetry, 2014, 6, 103-110.	1.1	4
115	Re-entrant phase transitions in non-commutative quantum mechanics. Journal of Physics: Conference Series, 2016, 670, 012040.	0.3	4
116	Electric field and curvature effects on relativistic Landau levels on a pseudosphere. Journal of Physics Condensed Matter, 2019, 31, 305301.	0.7	4
117	Time-dependent rationally extended Pöschl–Teller potential and some of its properties. European Physical Journal Plus, 2020, 135, 1.	1.2	4
118	Role of Darboux's theorem in supersymmetric quantum mechanics. Physical Review D, 1986, 33, 594-595.	1.6	3
119	Gaussian approach to finite temperature lambda phi 4 theory in a curved space. Classical and Quantum Gravity, 1989, 6, 2037-2043.	1.5	3
120	Remarks on quantum deformation of quasi-exactly solvable problems. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 214, 266-270.	0.9	3
121	Sexual dimorphism and polymorphism in a Callovian Phlycticeras (Ammonoidea) assemblage of Kutch, India. Geobios, 2010, 43, 269-281.	0.7	3
122	Relativistic Coulomb problem in curved spaces. Europhysics Letters, 2019, 127, 10005.	0.7	3
123	Modulation of Landau levels and de Haas-van Alphen oscillation in magnetized graphene by uniaxial tensile strain/stress. Journal of Magnetism and Magnetic Materials, 2021, 522, 167473.	1.0	3
124	Quasi coherent state of the Dirac oscillator. Journal of Modern Optics, 2021, 68, 56-62.	0.6	3
125	Three-anyon problem and supersymmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 183, 33-36.	0.9	2
126	Remarks on the construction of a Hermitian phase operator. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1997, 9, L37-L44.	1.0	2

#	Article	IF	CITATIONS
127	COHERENT STATE OF THE EXTENDED SCARF I POTENTIAL AND SOME OF ITS PROPERTIES. Modern Physics Letters A, 2013, 28, 1350123.	0.5	2
128	Pseudo-hermitian and mml="http://www.w3.org/1998/Math/MathML" altimg="si11.gif" display="inline" overflow="scroll"><a h<="" td=""><td>1.0</td><td>2</td>	1.0	2
129	Nonlinear SchrĶdinger equation with complex supersymmetric potentials. Physics of Particles and Nuclei Letters, 2017, 14, 347-356.	0.1	2
130	Corbulid (Bivalvia) species from the Palaeogene Mangrol Lignite Mine of Surat, Gujarat. Journal of the Geological Society of India, 2017, 89, 315-320.	0.5	2
131	Solutions of the Bogoliubov–de Gennes equation with position dependent Fermi-velocity and gap profiles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 713-719.	0.9	2
132	Orbital magnetization in axially symmetric two-dimensional carbon allotrope: influence of electric field and geometry. Journal of Physics Condensed Matter, 2020, 32, 385703.	0.7	2
133	On supersymmetry breaking in a strong magnetic field. Journal of Physics G: Nuclear Physics, 1984, 10, 417-422.	0.8	1
134	A note on supersymmetry and magnetic fields. European Physical Journal D, 1984, 34, 516-519.	0.4	1
135	Effective lagrangian for a supersymmetric non-abelian gauge theory. Zeitschrift Für Physik C-Particles and Fields, 1986, 30, 79-81.	1.5	1
136	On the localisation of strings at finite temperature. Classical and Quantum Gravity, 1988, 5, 1393-1396.	1.5	1
137	Remarks on the finite temperature effect in supersymmetric quantum mechanics. Journal of Physics A, 1988, 21, 3187-3192.	1.6	1
138	FINITE TEMPERATURE EFFECTIVE POTENTIAL IN A KALUZA-KLEIN UNIVERSE. International Journal of Modern Physics A, 1990, 05, 353-361.	0.5	1
139	A VARIATIONAL APPROACH TO THE LIOUVILLE MODEL. Modern Physics Letters A, 1991, 06, 333-336.	0.5	1
140	Dynamical symmetry breaking in four-fermion theories in 2+1 dimensions. Physical Review D, 1995, 51, 3129-3131.	1.6	1
141	Quasi-classical investigation of nonpolynomial central potentials with broken supersymmetry. Canadian Journal of Physics, 1997, 75, 695-703.	0.4	1
142	SUPERSYMMETRIC APPROACH TO QUASINORMAL MODES. Modern Physics Letters A, 2008, 23, 751-760.	0.5	1
143	Bound states in continuum in effective-mass models. Europhysics Letters, 2010, 89, 20007.	0.7	1
144	On supersymmetry and random sources. Journal of Physics G: Nuclear Physics, 1984, 10, 1473-1473.	0.8	0

#	Article	IF	Citations
145	Comment on "Effect of a strong magnetic field and high temperature on broken gauge theories". Physical Review D, 1984, 29, 1857-1858.	1.6	0
146	Supersymmetry in non-simply-connected space-time. European Physical Journal D, 1984, 34, 507-515.	0.4	0
147	Supersymmetry and random sources. Zeitschrift Fýr Physik C-Particles and Fields, 1984, 22, 365-367.	1.5	0
148	Supersymmetry under the influence of a magnetic field and high temperature. Zeitschrift FÃ $\frac{1}{4}$ r Physik C-Particles and Fields, 1984, 23, 153-155.	1.5	0
149	On supersymmetry and random sources. Journal of Physics G: Nuclear Physics, 1984, 10, L51-L54.	0.8	0
150	Notizen: On Chiral Symmetry Breaking in a Non-Simply Connected Space-Time. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1985, 40, 957-958.	0.7	0
151	High-density behavior in supersymmetry. Physical Review D, 1985, 31, 947-948.	1.6	0
152	Supersymmetry at high density. Journal of Physics G: Nuclear Physics, 1985, 11, L1-L3.	0.8	0
153	Supersymmetry in curved space. Physical Review D, 1986, 34, 1787-1790.	1.6	0
154	SUPERSYMMETRY AT FINITE TEMPERATURE — A THERMO FIELD DYNAMICS APPROACH. Modern Physics Letters A, 1988, 03, 1619-1624.	0.5	0
155	Magnetic point vortex and parasupersymmetry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 305, 353-356.	1.5	0
156	REMARK ON CONTACT INTERACTION OF SUPERSYMMETRIC ANYONS. Modern Physics Letters A, 1994, 09, 1635-1642.	0.5	0
157	Comment on ÂThe Darboux transformation and algebraic deformations of shape-invariant potentialsÂ. Journal of Physics A, 2004, 37, 8401-8404.	1.6	0
158	Sexual dimorphism in Hecticoceras giganteum SPATH (Ammonoidea) from the Callovian (Middle) Tj ETQq0 0 0 rg 263-272.	BT /Overlo 0.2	ock 10 Tf 50 0
159	Higher order intertwining approach to quasinormal modes. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 5865-5874.	0.7	0
160	Construction of the ? operator for a ?? symmetric model. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 079801.	0.7	0
161	EXACTLY SOLVABLE INTERPOLATING HAMILTONIANS WITH POSITION-DEPENDENT MASS. Modern Physics Letters A, 2010, 25, 2915-2922.	0.5	0
162	Comment on "A novel class of isospectral deformations in supersymmetric quantum mechanics―by B. Jensen, JHEP 11(2011)059. Journal of High Energy Physics, 2012, 2012, 1.	1.6	0

Pinaki Roy

#	Article	IF	CITATIONS
163	Potential algebra approach to quantum mechanics with generalized uncertainty principle. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125953.	0.9	O
164	Real and imaginary cat states of graphene and some of their properties. Europhysics Letters, 2020, 131, 68004.	0.7	0
165	Dirac equation in $(1+1)$ dimensional curved space-time: Bound states and bound states in continuum. Physica Scripta, 2021, 96, 025303.	1.2	0