
## Michael T. Williams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2318664/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                      | lF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Morris water maze: procedures for assessing spatial and related forms of learning and memory.<br>Nature Protocols, 2006, 1, 848-858.                                                                                                                                                         | 5.5 | 3,377     |
| 2  | Assessing Spatial Learning and Memory in Rodents. ILAR Journal, 2014, 55, 310-332.                                                                                                                                                                                                           | 1.8 | 405       |
| 3  | Hypoxia-Ischemia Induces DNA Synthesis without Cell Proliferation in Dying Neurons in Adult Rodent<br>Brain. Journal of Neuroscience, 2004, 24, 10763-10772.                                                                                                                                 | 1.7 | 259       |
| 4  | Deficiency in Na,K-ATPase  Isoform Genes Alters Spatial Learning, Motor Activity, and Anxiety in Mice.<br>Journal of Neuroscience, 2007, 27, 616-626.                                                                                                                                        | 1.7 | 249       |
| 5  | The Effects of Neonatal Isoflurane Exposure in Mice on Brain Cell Viability, Adult Behavior, Learning,<br>and Memory. Anesthesia and Analgesia, 2009, 108, 90-104.                                                                                                                           | 1.1 | 225       |
| 6  | Comparison of the elevated plus and elevated zero mazes in treated and untreated male<br>Sprague–Dawley rats: Effects of anxiolytic and anxiogenic agents. Pharmacology Biochemistry and<br>Behavior, 2011, 97, 406-415.                                                                     | 1.3 | 146       |
| 7  | Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and<br>mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide<br>accumulation and progressive neurological deficits. Human Molecular Genetics, 2010, 19, 1088-1097. | 1.4 | 113       |
| 8  | Impaired spatial and sequential learning in rats treated neonatally withd-fenfluramine. European<br>Journal of Neuroscience, 2002, 16, 491-500.                                                                                                                                              | 1.2 | 111       |
| 9  | Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies. Neurotoxicology and Teratology, 2014, 45, 75-90.                                                                                                              | 1.2 | 108       |
| 10 | Creatine Transporter (CrT; Slc6a8) Knockout Mice as a Model of Human CrT Deficiency. PLoS ONE, 2011,<br>6, e16187.                                                                                                                                                                           | 1.1 | 99        |
| 11 | DevelopmentalD-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory. Synapse, 2003, 48, 138-148.                                                                                           | 0.6 | 85        |
| 12 | Na,K-ATPase and the role of $\hat{I}\pm$ isoforms in behavior. Journal of Bioenergetics and Biomembranes, 2007, 39, 385-389.                                                                                                                                                                 | 1.0 | 80        |
| 13 | Refining the critical period for methamphetamine-induced spatial deficits in the Morris water maze.<br>Psychopharmacology, 2003, 168, 329-338.                                                                                                                                               | 1.5 | 78        |
| 14 | Effect of (+)-methamphetamine on path integration learning, novel object recognition, and neurotoxicity in rats. Psychopharmacology, 2008, 199, 637-650.                                                                                                                                     | 1.5 | 71        |
| 15 | 3,4-Methylenedioxymethamphetamine in Adult Rats Produces Deficits in Path Integration and Spatial<br>Reference Memory. Biological Psychiatry, 2006, 59, 1219-1226.                                                                                                                           | 0.7 | 70        |
| 16 | Abnormal neurodevelopment, neurosignaling and behaviour in Npas3-deficient mice. European Journal of Neuroscience, 2005, 22, 1265-1276.                                                                                                                                                      | 1.2 | 67        |
| 17 | Long-term effects of neonatal methamphetamine exposure in rats on spatial learning in the Barnes<br>maze and on cliff avoidance, corticosterone release, and neurotoxicity in adulthood. Developmental<br>Brain Research, 2003, 147, 163-175.                                                | 2.1 | 66        |
| 18 | Effects of neonatal (+)â€methamphetamine on path integration and spatial learning in rats: effects of<br>dose and rearing conditions. International Journal of Developmental Neuroscience, 2008, 26, 599-610.                                                                                | 0.7 | 65        |

| #  | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Prenatal immune challenge in rats: Effects of polyinosinic–polycytidylic acid on spatial learning,<br>prepulse inhibition, conditioned fear, and responses to MK-801 and amphetamine. Neurotoxicology and<br>Teratology, 2015, 47, 54-65.                                                  | 1.2 | 63        |
| 20 | Abnormal response to stress and impaired NPS-induced hyperlocomotion, anxiolytic effect and corticosterone increase in mice lacking NPSR1. Psychoneuroendocrinology, 2010, 35, 1119-1132.                                                                                                  | 1.3 | 62        |
| 21 | Exposure to 3,4â€methylenedioxymethamphetamine (MDMA) on postnatal days 11–20 induces reference<br>but not working memory deficits in the Morris water maze in rats: implications of prior learning.<br>International Journal of Developmental Neuroscience, 2004, 22, 247-259.            | 0.7 | 59        |
| 22 | Periadolescent rats (P41–50) exhibit increased susceptibility to d-methamphetamine-induced long-term<br>spatial and sequential learning deficits compared to juvenile (P21–30 or P31–40) or adult rats (P51–60).<br>Neurotoxicology and Teratology, 2005, 27, 117-134.                     | 1.2 | 57        |
| 23 | Effects of prenatal cocaine on Morris and Barnes maze tests of spatial learning and memory in the offspring of C57BL/6J mice. Neurotoxicology and Teratology, 2000, 22, 547-557.                                                                                                           | 1.2 | 56        |
| 24 | Developmental 3,4-methylenedioxymethamphetamine (MDMA) impairs sequential and spatial but not<br>cued learning independent of growth, litter effects or injection stress. Brain Research, 2003, 968,<br>89-101.                                                                            | 1.1 | 56        |
| 25 | Developmental effects of 3,4-methylenedioxymethamphetamine: a review. Behavioural Pharmacology, 2008, 19, 91-111.                                                                                                                                                                          | 0.8 | 56        |
| 26 | Systemic and behavioral effects of intranasal administration of silver nanoparticles.<br>Neurotoxicology and Teratology, 2015, 51, 68-76.                                                                                                                                                  | 1.2 | 53        |
| 27 | Alterations in Body Temperature, Corticosterone, and Behavior Following the Administration of<br>5-Methoxy-Diisopropyltryptamine (â€~Foxy') to Adult Rats: a New Drug of Abuse.<br>Neuropsychopharmacology, 2007, 32, 1404-1420.                                                           | 2.8 | 52        |
| 28 | Progression of multiple behavioral deficits with various ages of onset in a murine model of Hurler syndrome. Brain Research, 2008, 1188, 241-253.                                                                                                                                          | 1.1 | 52        |
| 29 | Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats.<br>Neurobiology of Learning and Memory, 2012, 97, 402-408.                                                                                                                                  | 1.0 | 52        |
| 30 | Prenatal immune challenge in rats: Altered responses to dopaminergic and glutamatergic agents,<br>prepulse inhibition of acoustic startle, and reduced routeâ€based learning as a function of maternal<br>body weight gain after prenatal exposure to poly IC. Synapse, 2012, 66, 725-737. | 0.6 | 52        |
| 31 | Preweaning treatment with methamphetamine induces increases in both corticosterone and ACTH in rats. Neurotoxicology and Teratology, 2000, 22, 751-759.                                                                                                                                    | 1.2 | 51        |
| 32 | Mouse plasmacytoma-expressed transcript 1 knock out induced 5-HT disruption results in a lack of cognitive deficits and an anxiety phenotype complicated by hypoactivity and defensiveness. Neuroscience, 2009, 164, 1431-1443.                                                            | 1.1 | 51        |
| 33 | Methamphetamine exposure from postnatal day 11 to 20 causes impairments in both behavioral strategies and spatial learning in adult rats. Brain Research, 2002, 958, 312-321.                                                                                                              | 1.1 | 49        |
| 34 | Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity<br>and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32<br>double-knockout mice. Genes, Brain and Behavior, 2006, 5, 540-551.                           | 1.1 | 49        |
| 35 | Perinatal exposure to the selective serotonin reuptake inhibitor citalopram alters spatial learning<br>and memory, anxiety, depression, and startle in Spragueâ€Dawley rats. International Journal of<br>Developmental Neuroscience, 2016, 54, 39-52.                                      | 0.7 | 48        |
| 36 | Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of <i>Tshz1</i> Mutants Correlates with Fear,<br>Depression, and Social Interaction Phenotypes. Journal of Neuroscience, 2018, 38, 1160-1177.                                                                                      | 1.7 | 47        |

| #  | Article                                                                                                                                                                                                                                                      | IF        | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 37 | (+)â€Methamphetamine increases corticosterone in plasma and BDNF in brain more than forced swim or isolation in neonatal rats. Synapse, 2008, 62, 110-121.                                                                                                   | 0.6       | 45        |
| 38 | Short†and longâ€term effects of (+)â€methamphetamine and (±)â€3,4â€methylenedioxymethamphetamine o<br>monoamine and corticosterone levels in the neonatal rat following multiple days of treatment.<br>Journal of Neurochemistry, 2008, 104, 1674-1685.      | on<br>2.1 | 43        |
| 39 | <i>In Utero</i> and Lactational Exposure to PCBs in Mice: Adult Offspring Show Altered Learning and<br>Memory Depending on <i>Cyp1a2</i> and <i>Ahr</i> Genotypes. Environmental Health Perspectives,<br>2011, 119, 1286-1293.                               | 2.8       | 42        |
| 40 | Oligodendrocyte Nf1 Controls Aberrant Notch Activation and Regulates Myelin Structure and Behavior. Cell Reports, 2017, 19, 545-557.                                                                                                                         | 2.9       | 42        |
| 41 | Dopamine depletion in either the dorsomedial or dorsolateral striatum impairs egocentric Cincinnati<br>water maze performance while sparing allocentric Morris water maze learning. Neurobiology of<br>Learning and Memory, 2015, 118, 55-63.                | 1.0       | 40        |
| 42 | Treatment with MDMA from P11–20 disrupts spatial learning and path integration learning in adolescent rats but only spatial learning in older rats. Psychopharmacology, 2006, 189, 307-318.                                                                  | 1.5       | 39        |
| 43 | Neonatal (+)-methamphetamine increases brain derived neurotrophic factor, but not nerve growth<br>factor, during treatment and results in long-term spatial learning deficits.<br>Psychoneuroendocrinology, 2007, 32, 734-745.                               | 1.3       | 39        |
| 44 | Effects of (+)â€methamphetamine on path integration and spatial learning, but not locomotor activity<br>or acoustic startle, align with the stress hyporesponsive period in rats. International Journal of<br>Developmental Neuroscience, 2009, 27, 289-298. | 0.7       | 39        |
| 45 | Age-dependent effects of neonatal methamphetamine exposure on spatial learning. Behavioural<br>Pharmacology, 2007, 18, 549-562.                                                                                                                              | 0.8       | 38        |
| 46 | Neurological deficits and glycosphingolipid accumulation in saposin B deficient mice. Human<br>Molecular Genetics, 2008, 17, 2345-2356.                                                                                                                      | 1.4       | 38        |
| 47 | Effect of a neurotoxic dose regimen of (+)-methamphetamine on behavior, plasma corticosterone, and brain monoamines in adult C57BL/6 mice. Neurotoxicology and Teratology, 2010, 32, 346-355.                                                                | 1.2       | 38        |
| 48 | Neurobehavioral phenotype of C57BL/6J mice prenatally and neonatally exposed to cigarette smoke.<br>Neurotoxicology and Teratology, 2013, 35, 34-45.                                                                                                         | 1.2       | 38        |
| 49 | Cincinnati water maze: A review of the development, methods, and evidence as a test of egocentric learning and memory. Neurotoxicology and Teratology, 2016, 57, 1-19.                                                                                       | 1.2       | 38        |
| 50 | Effects of pyrethroids on brain development and behavior: Deltamethrin. Neurotoxicology and Teratology, 2021, 87, 106983.                                                                                                                                    | 1.2       | 36        |
| 51 | Specific saposin C deficiency: CNS impairment and acid Â-glucosidase effects in the mouse. Human<br>Molecular Genetics, 2010, 19, 634-647.                                                                                                                   | 1.4       | 35        |
| 52 | Neurotoxic (+)-methamphetamine treatment in rats increases brain-derived neurotrophic factor and<br>tropomyosin receptor kinase B expression in multiple brain regions. Neuroscience, 2011, 184, 164-171.                                                    | 1.1       | 35        |
| 53 | Knockout of latrophilin-3 in Sprague-Dawley rats causes hyperactivity, hyper-reactivity,<br>under-response to amphetamine, and disrupted dopamine markers. Neurobiology of Disease, 2019, 130,<br>104494.                                                    | 2.1       | 35        |
| 54 | Methamphetamine exposure during the preweanling period causes prolonged changes in dorsal<br>striatal protein kinase A activity, dopamine D2-like binding sites, and dopamine content. Synapse, 2003,<br>48, 131-137.                                        | 0.6       | 34        |

4

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Behavioral and growth effects induced by low dose methamphetamine administration during the neonatal period in rats. International Journal of Developmental Neuroscience, 2004, 22, 273-283.                                                                                     | 0.7 | 34        |
| 56 | Learning and memory after neonatal exposure to 3,4-methylenedioxymethamphetamine (ecstasy) in rats:<br>Interaction with exposure in adulthood. Synapse, 2005, 57, 148-159.                                                                                                       | 0.6 | 34        |
| 57 | Targeted mutations in the Na,Kâ€ATPase alpha 2 isoform confer ouabain resistance and result in abnormal behavior in mice. Synapse, 2011, 65, 520-531.                                                                                                                            | 0.6 | 34        |
| 58 | Comparison of monoamine and corticosterone levels 24 h following (+)methamphetamine,<br>(+/–)3,4-methylenedioxymethamphetamine, cocaine, (+)fenfluramine or (+/–)methylphenidate<br>administration in the neonatal rat. Journal of Neurochemistry, 2006, 98, 1369-1378.          | 2.1 | 33        |
| 59 | Neonatal methamphetamine administration induces region-specific long-term neuronal morphological changes in the rat hippocampus, nucleus accumbens and parietal cortex. European Journal of Neuroscience, 2004, 19, 3165-3170.                                                   | 1.2 | 32        |
| 60 | (+/–)3,4-Methylenedioxymethamphetamine (MDMA) Dose-Dependently Impairs Spatial Learning in the<br>Morris Water Maze after Exposure of Rats to Different Five-Day Intervals from Birth to Postnatal Day<br>Twenty. Developmental Neuroscience, 2009, 31, 107-120.                 | 1.0 | 32        |
| 61 | Developmental manganese neurotoxicity in rats: Cognitive deficits in allocentric and egocentric learning and memory. Neurotoxicology and Teratology, 2017, 59, 16-26.                                                                                                            | 1.2 | 32        |
| 62 | Chronic psychosocial stress during pregnancy affects maternal behavior and neuroendocrine<br>function and modulates hypothalamic CRH and nuclear steroid receptor expression. Translational<br>Psychiatry, 2020, 10, 6.                                                          | 2.4 | 32        |
| 63 | Effect of vitamin C deficiency during postnatal development on adult behavior: functional phenotype<br>of <i>Gulo(</i> â^' <i>/</i> â^' <i>)</i> knockout mice. Genes, Brain and Behavior, 2012, 11, 269-277.                                                                    | 1.1 | 31        |
| 64 | Deltamethrin Exposure Daily From Postnatal Day 3–20 in Sprague-Dawley Rats Causes Long-term<br>Cognitive and Behavioral Deficits. Toxicological Sciences, 2019, 169, 511-523.                                                                                                    | 1.4 | 31        |
| 65 | Comparison of (+)â€methamphetamine, ±â€Methylenedioxymethamphetamine, (+)â€amphetamine and<br>±â€fenfluramine in rats on egocentric learning in the Cincinnati water maze. Synapse, 2011, 65, 368-378.                                                                           | 0.6 | 30        |
| 66 | Differential effects of perinatal exposure to antidepressants on learning and memory, acoustic<br>startle, anxiety, and openâ€field activity in Spragueâ€Dawley rats. International Journal of Developmental<br>Neuroscience, 2017, 61, 92-111.                                  | 0.7 | 30        |
| 67 | 3,4-Methylenedioxymethamphetamine administration on postnatal day 11 in rats increases pituitary–adrenal output and reduces striatal and hippocampal serotonin without altering SERT activity. Brain Research, 2005, 1039, 97-107.                                               | 1.1 | 29        |
| 68 | Effects of developmental stress and lead (Pb) on corticosterone after chronic and acute stress, brain<br>monoamines, and blood Pb levels in rats. International Journal of Developmental Neuroscience, 2011,<br>29, 45-55.                                                       | 0.7 | 29        |
| 69 | 6-Hydroxydopamine-Induced Dopamine Reductions in the Nucleus Accumbens, but not the Medial<br>Prefrontal Cortex, Impair Cincinnati Water Maze Egocentric and Morris Water Maze Allocentric<br>Navigation in Male Sprague–Dawley Rats. Neurotoxicity Research, 2016, 30, 199-212. | 1.3 | 28        |
| 70 | Effects of developmental manganese, stress, and the combination of both on monoamines, growth, and corticosterone. Toxicology Reports, 2014, 1, 1046-1061.                                                                                                                       | 1.6 | 27        |
| 71 | Female mice heterozygous for creatine transporter deficiency show moderate cognitive deficits.<br>Journal of Inherited Metabolic Disease, 2014, 37, 63-68.                                                                                                                       | 1.7 | 27        |
| 72 | (±)-3,4-Methylenedioxymethamphetamine treatment in adult rats impairs path integration learning: A<br>comparison of single vs once per week treatment for 5 weeks. Neuropharmacology, 2008, 55, 1121-1130.                                                                       | 2.0 | 26        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Comparison of the developmental effects of 5-methoxy-N,N-diisopropyltryptamine (Foxy) to<br>(±)-3,4-methylenedioxymethamphetamine (ecstasy) in rats. Psychopharmacology, 2009, 204, 287-297.                                                                         | 1.5 | 26        |
| 74 | (±)3,4â€methylenedioxymethamphetamine ("ecstasyâ€ <del>)</del> treatment modulates expression of neurotrophins<br>and their receptors in multiple regions of adult rat brain. Journal of Comparative Neurology, 2012,<br>520, 2459-2474.                             | 0.9 | 26        |
| 75 | Ontogeny of the adrenal response to (+)-methamphetamine in neonatal rats: The effect of prior drug exposure. Stress, 2006, 9, 153-163.                                                                                                                               | 0.8 | 25        |
| 76 | Kaolinâ€induced ventriculomegaly at weaning produces longâ€ŧerm learning, memory, and motor deficits<br>in rats. International Journal of Developmental Neuroscience, 2014, 35, 7-15.                                                                                | 0.7 | 25        |
| 77 | Developmental manganese, lead, and barren cage exposure have adverse long-term neurocognitive,<br>behavioral and monoamine effects in Sprague-Dawley rats. Neurotoxicology and Teratology, 2018, 67,<br>50-64.                                                       | 1.2 | 24        |
| 78 | Cognitive deficits and increases in creatine precursors in a brainâ€specific knockout of the creatine transporter gene <i>Slc6a8</i> . Genes, Brain and Behavior, 2018, 17, e12461.                                                                                  | 1.1 | 24        |
| 79 | Impairment of cognitive flexibility in type 2 diabetic db/db mice. Behavioural Brain Research, 2019, 371, 111978.                                                                                                                                                    | 1.2 | 24        |
| 80 | Developmental effects of ±3,4-methylenedioxymethamphetamine on spatial versus path integration learning: Effects of dose distribution. Synapse, 2007, 61, 488-499.                                                                                                   | 0.6 | 23        |
| 81 | (+)â€Methamphetamineâ€induced monoamine reductions and impaired egocentric learning in<br>adrenalectomized rats is independent of hyperthermia. Synapse, 2010, 64, 773-785.                                                                                          | 0.6 | 22        |
| 82 | Mechanisms involved in the neurotoxic and cognitive effects of developmental methamphetamine exposure. Birth Defects Research Part C: Embryo Today Reviews, 2016, 108, 131-141.                                                                                      | 3.6 | 22        |
| 83 | Developmental manganese exposure in combination with developmental stress and iron deficiency:<br>Effects on behavior and monoamines. Neurotoxicology and Teratology, 2016, 56, 55-67.                                                                               | 1.2 | 22        |
| 84 | Neonatal 3,4-methylenedioxymethamphetamine (MDMA) exposure alters neuronal protein kinase A<br>activity, serotonin and dopamine content, and [35S]GTPI <sup>3</sup> S binding in adult rats. Brain Research, 2006,<br>1077, 178-186.                                 | 1.1 | 21        |
| 85 | In Utero and Lactational Exposure to a Complex Mixture of Polychlorinated Biphenyls: Toxicity in Pups Dependent on the Cyp1a2 and Ahr Genotypes. Toxicological Sciences, 2011, 119, 189-208.                                                                         | 1.4 | 21        |
| 86 | Neurobehavioral Effects from Developmental Methamphetamine Exposure. Current Topics in Behavioral Neurosciences, 2015, 29, 183-230.                                                                                                                                  | 0.8 | 21        |
| 87 | Developmental stress and lead (Pb): Effects of maternal separation and/or Pb on corticosterone, monoamines, and blood Pb in rats. NeuroToxicology, 2016, 54, 22-33.                                                                                                  | 1.4 | 21        |
| 88 | Developmental treatment with the dopamine D2/3 agonist quinpirole selectively impairs spatial learning in the Morris water maze. Neurotoxicology and Teratology, 2009, 31, 1-10.                                                                                     | 1.2 | 20        |
| 89 | Cognitive impairments from developmental exposure to serotonergic drugs: citalopram and MDMA.<br>International Journal of Neuropsychopharmacology, 2013, 16, 1383-1394.                                                                                              | 1.0 | 20        |
| 90 | Effects of developmental exposure to manganese and/or low iron diet: Changes to metal transporters, sucrose preference, elevated zero-maze, open-field, and locomotion in response to fenfluramine, amphetamine, and MK-801. Toxicology Reports, 2015, 2, 1046-1056. | 1.6 | 20        |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Infectionâ€induced endothelial amyloids impair memory. FASEB Journal, 2019, 33, 10300-10314.                                                                                                                                                                      | 0.2 | 20        |
| 92  | Enhanced Transient Striatal Dopamine Release and Reuptake in Lphn3 Knockout Rats. ACS Chemical Neuroscience, 2020, 11, 1171-1177.                                                                                                                                 | 1.7 | 20        |
| 93  | A new model of <i>Pde4d</i> deficiency: genetic knockâ€down of PDE4D enzyme in rats produces an antidepressant phenotype without spatial cognitive effects. Genes, Brain and Behavior, 2012, 11, 614-622.                                                         | 1.1 | 19        |
| 94  | Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a. Psychopharmacology, 2017, 234, 1803-1813.                                                                         | 1.5 | 18        |
| 95  | Chronic social defeat, but not restraint stress, alters bladder function in mice. Physiology and Behavior, 2015, 150, 83-92.                                                                                                                                      | 1.0 | 17        |
| 96  | Administration of d,l-fenfluramine to rats produces learning deficits in the Cincinnati water maze but<br>not the Morris water maze: relationship to adrenal cortical output. Neurotoxicology and Teratology,<br>2002, 24, 783-796.                               | 1.2 | 16        |
| 97  | A Single High Dose of Methamphetamine Reduces Monoamines and Impairs Egocentric and Allocentric<br>Learning and Memory in Adult Male Rats. Neurotoxicity Research, 2018, 33, 671-680.                                                                             | 1.3 | 16        |
| 98  | Effects of inhibiting neonatal methamphetamineâ€induced corticosterone release in rats by adrenal<br>autotransplantation on later learning, memory, and plasma corticosterone levels. International<br>Journal of Developmental Neuroscience, 2010, 28, 331-342.  | 0.7 | 15        |
| 99  | Effect of chronic glutathione deficiency on the behavioral phenotype of Gclm(â^'/â^') knockout mice.<br>Neurotoxicology and Teratology, 2012, 34, 450-457.                                                                                                        | 1.2 | 15        |
| 100 | A better approach to in vivo developmental neurotoxicity assessment: Alignment of rodent testing<br>with effects seen in children after neurotoxic exposures. Toxicology and Applied Pharmacology, 2018,<br>354, 176-190.                                         | 1.3 | 15        |
| 101 | Characterization of Motor and Non-Motor Behavioral Alterations in the Dj-1 (PARK7) Knockout Rat.<br>Journal of Molecular Neuroscience, 2019, 69, 298-311.                                                                                                         | 1.1 | 15        |
| 102 | Tissue-specific effects of saposin A and saposin B on glycosphingolipid degradation in mutant mice.<br>Human Molecular Genetics, 2013, 22, 2435-2450.                                                                                                             | 1.4 | 14        |
| 103 | Neonatal (+)-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists.<br>International Journal of Neuropsychopharmacology, 2013, 16, 377-391. | 1.0 | 14        |
| 104 | The potassium channel Kv4.2 regulates dendritic spine morphology, electroencephalographic characteristics and seizure susceptibility in mice. Experimental Neurology, 2020, 334, 113437.                                                                          | 2.0 | 14        |
| 105 | Glucose and corticosterone changes in developing and adult rats following exposure to<br>(±)-3,4-methylendioxymethamphetamine or 5-methoxydiisopropyltryptamine. Neurotoxicology and<br>Teratology, 2010, 32, 152-157.                                            | 1.2 | 12        |
| 106 | Latrophilin-3 disruption: Effects on brain and behavior. Neuroscience and Biobehavioral Reviews, 2021, 127, 619-629.                                                                                                                                              | 2.9 | 12        |
| 107 | A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats.<br>Neurobiology of Disease, 2021, 158, 105456.                                                                                                                   | 2.1 | 12        |
| 108 | Absorption and clearance of ±3,4-methylenedioxymethamphetamine from the plasma of neonatal rats.<br>Neurotoxicology and Teratology, 2004, 26, 849-856.                                                                                                            | 1.2 | 11        |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Effects of Housing on Methamphetamine-Induced Neurotoxicity and Spatial Learning and Memory. ACS Chemical Neuroscience, 2017, 8, 1479-1489.                                                                                                                                       | 1.7 | 11        |
| 110 | Effects of intrastriatal dopamine D1 or D2 antagonists on methamphetamine-induced egocentric and allocentric learning and memory deficits in Sprague–Dawley rats. Psychopharmacology, 2019, 236, 2243-2258.                                                                       | 1.5 | 11        |
| 111 | Effects of Acute Deltamethrin Exposure in Adult and Developing Sprague Dawley Rats on Acoustic<br>Startle Response in Relation to Deltamethrin Brain and Plasma Concentrations. Toxicological<br>Sciences, 2019, 168, 61-69.                                                      | 1.4 | 11        |
| 112 | Metyrapone attenuates the sequential learning deficits but not monoamine depletions following d,l-fenfluramine administration to adult rats. Synapse, 2004, 54, 214-222.                                                                                                          | 0.6 | 10        |
| 113 | Learning and memory effects of neonatal methamphetamine exposure in rats: Role of reactive oxygen species and age at assessment. Synapse, 2017, 71, e21992.                                                                                                                       | 0.6 | 10        |
| 114 | Effects of Acute Exposure of Permethrin in Adult and Developing Sprague-Dawley Rats on Acoustic<br>Startle Response and Brain and Plasma Concentrations. Toxicological Sciences, 2018, 165, 361-371.                                                                              | 1.4 | 10        |
| 115 | Effects of periadolescent fluoxetine and paroxetine on elevated plus-maze, acoustic startle, and swimming immobility in rats while on and off-drug. Behavioral and Brain Functions, 2011, 7, 41.                                                                                  | 1.4 | 9         |
| 116 | Neurobehavioral abnormalities following prenatal psychosocial stress are differentially modulated by maternal environment. Translational Psychiatry, 2022, 12, 22.                                                                                                                | 2.4 | 9         |
| 117 | Neonatal methylphenidate does not impair adult spatial learning in the Morris water maze in rats.<br>Neuroscience Letters, 2011, 502, 152-156.                                                                                                                                    | 1.0 | 8         |
| 118 | A heterozygous mutation in <i>tubulin, beta <scp>2B</scp></i> ( <i><scp>Tubb2b</scp></i> ) causes cognitive deficits and hippocampal disorganization. Genes, Brain and Behavior, 2017, 16, 250-259.                                                                               | 1.1 | 8         |
| 119 | Effects of Preweaning Manganese in Combination with Adult Striatal Dopamine Lesions on<br>Monoamines, BDNF, TrkB, and Cognitive Function in Sprague–Dawley Rats. Neurotoxicity Research,<br>2019, 35, 606-620.                                                                    | 1.3 | 8         |
| 120 | Litter effects: Comments on Golub and Sobin's "Statistical modeling of litter as a random effect in<br>mixed models to manage "intralitter likenessâ€â€• Neurotoxicology and Teratology, 2020, 77, 106852.                                                                        | 1.2 | 8         |
| 121 | Learning and Memory Effects of Neonatal Methamphetamine Exposure in Sprague-Dawley Rats: Test of the Role of Dopamine Receptors D1 in Mediating the Long-Term Effects. Developmental Neuroscience, 2019, 41, 44-55.                                                               | 1.0 | 7         |
| 122 | Mouse knockout of guanylyl cyclase C: Recognition memory deficits in the absence of activity changes. Genes, Brain and Behavior, 2019, 18, e12573.                                                                                                                                | 1.1 | 7         |
| 123 | An assessment of executive function in two different rat models of <scp>attentionâ€deficit</scp><br>hyperactivity disorder: Spontaneously hypertensive versus <i>Lphn3</i> knockout rats. Genes, Brain<br>and Behavior, 2021, 20, e12767.                                         | 1.1 | 7         |
| 124 | Elevations in plasmatic titers of corticosterone and aldosterone, in the absence of changes in ACTH, testosterone, or glial fibrillary acidic protein, 72 h following d,l-fenfluramine or d-fenfluramine administration to rats. Neurotoxicology and Teratology, 2001, 23, 23-32. | 1.2 | 6         |
| 125 | Neonatal methamphetamine-induced corticosterone release in rats is inhibited by adrenal autotransplantation without altering the effect of the drug on hippocampal serotonin. Neurotoxicology and Teratology, 2010, 32, 356-361.                                                  | 1.2 | 6         |
| 126 | Effects on plasma corticosterone levels and brain serotonin from interference with methamphetamine-induced corticosterone release in neonatal rats. Stress, 2010, 13, 469-480.                                                                                                    | 0.8 | 6         |

| #   | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Distinct periods of developmental sensitivity to the effects of 3,4-(±)-methylenedioxymethamphetamine<br>(MDMA) on behaviour and monoamines in rats. International Journal of Neuropsychopharmacology,<br>2012, 15, 811-824.                                                                    | 1.0 | 6         |
| 128 | Phosphodiesteraseâ€1b deletion confers depressionâ€like behavioral resistance separate from<br>stressâ€related effects in mice. Genes, Brain and Behavior, 2017, 16, 756-767.                                                                                                                   | 1.1 | 6         |
| 129 | Metal bashing: iron deficiency and manganese overexposure impact on peripheral nerves. Journal of<br>Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 99-112.                                                                                                            | 1.1 | 6         |
| 130 | Effects of Neonatal Methamphetamine and Stress on Brain Monoamines and Corticosterone in Preweanling Rats. Neurotoxicity Research, 2017, 31, 269-282.                                                                                                                                           | 1.3 | 5         |
| 131 | Whole brain proton irradiation in adult Sprague Dawley rats produces dose dependent and non-dependent cognitive, behavioral, and dopaminergic effects. Scientific Reports, 2020, 10, 21584.                                                                                                     | 1.6 | 5         |
| 132 | Neonatal Citalopram Treatment Inhibits the 5-HT Depleting Effects of MDMA Exposure in Rats. ACS Chemical Neuroscience, 2012, 3, 12-21.                                                                                                                                                          | 1.7 | 4         |
| 133 | Effects of neonatal methamphetamine treatment on adult stress-induced corticosterone release in rats. Neurotoxicology and Teratology, 2012, 34, 136-142.                                                                                                                                        | 1.2 | 4         |
| 134 | Prenatal exposure to PCBs in Cyp1a2 knockâ€out mice interferes with F 1 fertility, impairs longâ€ŧerm<br>potentiation, reduces acoustic startle and impairs conditioned freezing contextual memory with<br>minimal transgenerational effects. Journal of Applied Toxicology, 2019, 39, 603-621. | 1.4 | 4         |
| 135 | Impact of preweaning stress on long-term neurobehavioral outcomes in Sprague-Dawley rats:<br>Differential effects of barren cage rearing, pup isolation, and the combination. Neurotoxicology and<br>Teratology, 2021, 84, 106956.                                                              | 1.2 | 3         |
| 136 | Neuronal reorganization in adult rats neonatally exposed to (±)-3,4-methylenedioxymethamphetamine.<br>Toxicology Reports, 2014, 1, 699-706.                                                                                                                                                     | 1.6 | 2         |
| 137 | Effects of Permethrin or Deltamethrin Exposure in Adult Sprague Dawley Rats on Acoustic and Light<br>Prepulse Inhibition of Acoustic or Tactile Startle. Neurotoxicity Research, 2021, 39, 543-555.                                                                                             | 1.3 | 2         |
| 138 | Electroencephalographic and Convulsive Effects of Binge Doses of (+)- Methamphetamine,<br>5-methoxydiisopropyltryptamine, and (±)-3,4- Methylenedioxymethamphetamine in Rats. The Open<br>Neuropsychopharmacology Journal, 2012, 5, 1-8.                                                        | 0.3 | 2         |
| 139 | Prolonged methamphetamine exposure during a critical period in neonatal Sprague Dawley rats does<br>not exacerbate egocentric and allocentric learning deficits but increases reference memory<br>impairments, International Journal of Developmental Neuroscience, 2020, 80, 163-174           | 0.7 | 1         |