List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2318024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-assembly of colloidal superballs under spherical confinement of a drying droplet. Jcis Open, 2022, 5, 100037.	3.2	6
2	Characterization of hen phosvitin in aqueous salt solutions: Size, structure, and aggregation. Food Hydrocolloids, 2022, 129, 107545.	10.7	6
3	Shape Matters in Magnetic-Field-Assisted Assembly of Prolate Colloids. ACS Nano, 2022, 16, 2558-2568.	14.6	10
4	<i>In Situ</i> Optical and X-ray Spectroscopy Reveals Evolution toward Mature CdSe Nanoplatelets by Synergetic Action of Myristate and Acetate Ligands. Journal of the American Chemical Society, 2022, 144, 8096-8105.	13.7	9
5	Angular X-ray cross-correlation analysis applied to the scattering data in 3D reciprocal space from a single crystal. IUCrJ, 2022, 9, 425-438.	2.2	2
6	Depletion-Induced Chiral Chain Formation of Magnetic Spheres. Materials, 2021, 14, 507.	2.9	1
7	Extended Nucleation and Superfocusing in Colloidal Semiconductor Nanocrystal Synthesis. Nano Letters, 2021, 21, 2487-2496.	9.1	36
8	The Analysis of Periodic Order in Monolayers of Colloidal Superballs. Applied Sciences (Switzerland), 2021, 11, 5117.	2.5	3
9	Scattering from colloidal cubic silica shells: Part I, particle form factors and optical contrast variation. Journal of Colloid and Interface Science, 2020, 571, 419-428.	9.4	11
10	Path-Dependent Self-Assembly of Magnetic Anisotropic Colloidal Peanuts. Journal of Physical Chemistry B, 2020, 124, 5754-5760.	2.6	11
11	Block copolymer hierarchical structures from the interplay of multiple assembly pathways. Polymer Chemistry, 2020, 11, 2305-2311.	3.9	2
12	Femtosecond laser produced periodic plasma in a colloidal crystal probed by XFEL radiation. Scientific Reports, 2020, 10, 10780.	3.3	3
13	Unravelling three-dimensional adsorption geometries of PbSe nanocrystal monolayers at a liquid-air interface. Communications Chemistry, 2020, 3, .	4.5	19
14	Quantification of the Structure of Colloidal Gas-Liquid Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 8372-8377.	4.6	0
15	Quantification of the Structure of Colloidal Gas–Liquid Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 8372-8377.	4.6	4
16	Forced to line up for perfect order. Nature Materials, 2019, 18, 1151-1152.	27.5	1
17	High-resolution SAXS setup with tuneable resolution in direct and reciprocal space: a new tool to study ordered nanostructures. Journal of Applied Crystallography, 2019, 52, 1095-1103.	4.5	6
18	Convectively Assembled Monolayers of Colloidal Cubes: Evidence of Optimal Packings. Langmuir, 2019, 35, 4946-4955.	3.5	18

#	Article	IF	CITATIONS
19	Study of petrolatum structure: Explaining its variable rheological behavior. International Journal of Pharmaceutics, 2018, 540, 178-184.	5.2	11
20	Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser. Scientific Reports, 2018, 8, 2219.	3.3	15
21	Self-organization in dipolar cube fluids constrained by competing anisotropies. Soft Matter, 2018, 14, 1080-1087.	2.7	52
22	Ptychographic Xâ€Ray Imaging of Colloidal Crystals. Small, 2018, 14, 1702575.	10.0	11
23	Wet-Chemical Synthesis of Chiral Colloids. ACS Nano, 2018, 12, 12089-12095.	14.6	10
24	Crystallization of Nanocrystals in Spherical Confinement Probed by <i>in Situ</i> X-ray Scattering. Nano Letters, 2018, 18, 3675-3681.	9.1	53
25	Inward growth by nucleation: Multiscale self-assembly of ordered membranes. Science Advances, 2018, 4, eaat1817.	10.3	21
26	Unravelling the structural rearrangement of polymer colloidal crystals under dry sintering conditions. Soft Matter, 2018, 14, 6849-6856.	2.7	1
27	Cuboidal Supraparticles Self-Assembled from Cubic CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 15706-15712.	3.1	65
28	In situ observation of self-assembly of sugars and surfactants from nanometres to microns. Soft Matter, 2017, 13, 2421-2425.	2.7	21
29	Observation of solid–solid transitions in 3D crystals of colloidal superballs. Nature Communications, 2017, 8, 14352.	12.8	76
30	Giant capsids from lattice self-assembly of cyclodextrin complexes. Nature Communications, 2017, 8, 15856.	12.8	65
31	Entropic patchiness: Effects of colloid shape and depletion. Current Opinion in Colloid and Interface Science, 2017, 30, 54-61.	7.4	33
32	Growth of Porous Anodic Alumina on Low-Index Surfaces of Al Single Crystals. Journal of Physical Chemistry C, 2017, 121, 27511-27520.	3.1	34
33	In situ study of the formation mechanism ofÂtwo-dimensional superlattices from PbSeÂnanocrystals. Nature Materials, 2016, 15, 1248-1254.	27.5	199
34	Revealing Three-Dimensional Structure of an Individual Colloidal Crystal Grain by Coherent X-Ray Diffractive Imaging. Physical Review Letters, 2016, 117, 138002.	7.8	29
35	Crystallography-Induced Correlations in Pore Ordering of Anodic Alumina Films. Journal of Physical Chemistry C, 2016, 120, 19698-19704.	3.1	21
36	In Situ Probing of Stack-Templated Growth of Ultrathin Cu _{2–<i>x</i>} S Nanosheets. Chemistry of Materials, 2016, 28, 6381-6389.	6.7	29

#	Article	IF	CITATIONS
37	Large-scale ordering of nanoparticles using viscoelastic shear processing. Nature Communications, 2016, 7, 11661.	12.8	123
38	Nanoassembly of Polydisperse Photonic Crystals Based on Binary and Ternary Polymer Opal Alloys. Advanced Optical Materials, 2016, 4, 1494-1500.	7.3	27
39	Oleic Acid-Induced Atomic Alignment of ZnS Polyhedral Nanocrystals. Nano Letters, 2016, 16, 2608-2614.	9.1	33
40	Self-Assembly: Self-Organization of Anisotropic and Binary Colloids in Thermo-Switchable 1D Microconfinement (Part. Part. Syst. Charact. 3/2015). Particle and Particle Systems Characterization, 2015, 32, 270-270.	2.3	0
41	In situX-ray crystallography of colloidal crystals under sintering conditions. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s350-s351.	0.1	Ο
42	Selfâ€Organization of Anisotropic and Binary Colloids in Thermoâ€Switchable 1D Microconfinement. Particle and Particle Systems Characterization, 2015, 32, 313-320.	2.3	11
43	Structural Evolution of Colloidal Crystal Films in the Process of Melting Revealed by Bragg Peak Analysis. Langmuir, 2015, 31, 5274-5283.	3.5	27
44	Reconfigurable assembly of superparamagnetic colloids confined in thermo-reversible microtubes. Soft Matter, 2015, 11, 6201-6211.	2.7	21
45	Structure and stacking order in crystals of asymmetric dumbbell-like colloids. Journal of Applied Crystallography, 2015, 48, 238-243.	4.5	9
46	Particle shape effects in colloidal crystals and colloidal liquid crystals: Small-angle X-ray scattering studies with microradian resolution. Current Opinion in Colloid and Interface Science, 2015, 20, 272-281.	7.4	43
47	Tuning the Colloidal Crystal Structure of Magnetic Particles by External Field. Angewandte Chemie - International Edition, 2015, 54, 1803-1807.	13.8	39
48	Double hexagonal close-packed structure revealed in a single colloidal crystal grain by Bragg rod analysis. Journal of Applied Crystallography, 2014, 47, 1199-1204.	4.5	13
49	SAXS reveals the magnetic alignment pathway of the goethite columnar liquid crystal phase. Journal of Colloid and Interface Science, 2014, 428, 316-320.	9.4	3
50	Tuning biaxiality of nematic phases of board-like colloids by an external magnetic field. Soft Matter, 2014, 10, 446-456.	2.7	22
51	Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale. Physical Review B, 2014, 90, .	3.2	10
52	Self-Assembled CdSe/CdS Nanorod Sheets Studied in the Bulk Suspension by Magnetic Alignment. ACS Nano, 2014, 8, 10486-10495.	14.6	22
53	Size-Dependent Second Virial Coefficients of Quantum Dots from Quantitative Cryogenic Electron Microscopy. Journal of Physical Chemistry B, 2014, 118, 11000-11005.	2.6	18
54	Effects of Added Silica Nanoparticles on the Nematic Liquid Crystal Phase Formation in Beidellite Suspensions. Journal of Physical Chemistry B, 2014, 118, 4913-4919.	2.6	38

#	Article	IF	CITATIONS
55	Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science, 2014, 344, 1377-1380.	12.6	343
56	Self-assembly of colloidal hematite cubes: a microradian X-ray diffraction exploration of sedimentary crystals. Soft Matter, 2013, 9, 10729.	2.7	55
57	Phase behaviour of lyotropic liquid crystals in external fields and confinement. European Physical Journal: Special Topics, 2013, 222, 3053-3069.	2.6	34
58	In situ hard X-ray microscopy of self-assembly in colloidal suspensions. RSC Advances, 2013, 3, 15670.	3.6	38
59	Small-angle X-ray scattering documents the growth of metal-organic frameworks. Catalysis Today, 2013, 205, 120-127.	4.4	56
60	<i>In situ</i> X-ray crystallographic study of the structural evolution of colloidal crystals upon heating. Journal of Applied Crystallography, 2013, 46, 903-907.	4.5	5
61	Defect Engineering in Sedimentary Colloidal Photonic Crystals. Langmuir, 2013, 29, 10011-10018.	3.5	9
62	Helical Colloidal Sphere Structures through Thermoâ€Reversible Coâ€Assembly with Molecular Microtubes. Angewandte Chemie - International Edition, 2013, 52, 3364-3368.	13.8	72
63	Ageing in a system of polydisperse goethite boardlike particles showing rich phase behaviour. Journal of Physics Condensed Matter, 2012, 24, 464127.	1.8	6
64	Colloidal Crystallization and Structural Changes in Suspensions of Silica/Magnetite Core–Shell Nanoparticles. Langmuir, 2012, 28, 14777-14783.	3.5	46
65	Sedimentation and depletion attraction directing glass and liquid crystal formation in aqueous platelet/sphere mixtures. Soft Matter, 2012, 8, 191-197.	2.7	26
66	Dynamics of colloidal crystals studied by pump-probe experiments at FLASH. Physical Review B, 2012, 86,	3.2	6
67	Small-angle X-ray diffraction investigation of twinned opal-like structures. Physics of the Solid State, 2012, 54, 2073-2082.	0.6	3
68	Semiconductor Nanorod Self-Assembly at the Liquid/Air Interface Studied by in Situ GISAXS and ex Situ TEM. Nano Letters, 2012, 12, 5515-5523.	9.1	71
69	Phase behavior of colloidal silica rods. Faraday Discussions, 2012, 159, 181.	3.2	124
70	Self-Assembly of Colloidal Cubes via Vertical Deposition. Langmuir, 2012, 28, 7631-7638.	3.5	125
71	Three-Dimensional Structure and Defects in Colloidal Photonic Crystals Revealed by Tomographic Scanning Transmission X-ray Microscopy. Langmuir, 2012, 28, 3614-3620.	3.5	29
72	Casein micelles and their internal structure. Advances in Colloid and Interface Science, 2012, 171-172, 36-52.	14.7	355

#	Article	IF	CITATIONS
73	Light and Small-Angle X-Ray Diffraction from Opal-Like Structures. Series in Optics and Optoelectronics, 2012, , 275-300.	0.0	1
74	The Kinetics and Mechanism of Long-Range Pore Ordering in Anodic Films on Aluminum. Journal of Physical Chemistry C, 2011, 115, 23726-23731.	3.1	50
75	Live encapsulation of a Keggin polyanion in NH2-MIL-101(Al) observed by in situ time resolved X-ray scattering. Chemical Communications, 2011, 47, 8578.	4.1	61
76	Attractive glass formation in aqueous mixtures of colloidal gibbsite platelets and silica spheres. Soft Matter, 2011, 7, 2832.	2.7	20
77	Colloidal suspensions. Journal of Physics Condensed Matter, 2011, 23, 190201.	1.8	0
78	Magnetic topology of Co-based inverse opal-like structures. Physical Review B, 2011, 84, .	3.2	21
79	Scanning Transmission Xâ€Ray Microscopy as a Novel Tool to Probe Colloidal and Photonic Crystals. Small, 2011, 7, 804-811.	10.0	21
80	Kinetic Control of Metal–Organic Framework Crystallization Investigated by Timeâ€Resolved Inâ€Situ Xâ€Ray Scattering. Angewandte Chemie - International Edition, 2011, 50, 9624-9628.	13.8	182
81	3D structure of nematic and columnar phases of hard colloidal platelets. Journal of Physics Condensed Matter, 2011, 23, 194110.	1.8	2
82	Variable Dislocation Widths in Colloidal Crystals of Soft Thermosensitive Spheres. Physical Review Letters, 2011, 107, 095501.	7.8	16
83	Analysis of the imperfection of opal-like photonic crystals synthesized on conducting substrates. Physics of the Solid State, 2010, 52, 1087-1091.	0.6	3
84	Nanostructures: Scattering beyond the Born approximation. Physical Review B, 2010, 81, .	3.2	22
85	Coherent x-ray imaging of defects in colloidal crystals. Physical Review B, 2010, 81, .	3.2	31
86	Liquid crystal phase behavior of sterically-stabilized goethite. Journal of Colloid and Interface Science, 2010, 352, 354-358.	9.4	6
87	Long-range ordering in anodic alumina films: a microradian X-ray diffraction study. Journal of Applied Crystallography, 2010, 43, 531-538.	4.5	33
88	Revealing stacking sequences in inverse opals by microradian X-ray diffraction. Europhysics Letters, 2010, 89, 14002.	2.0	13
89	Uniaxial and biaxial liquid crystal phases in colloidal dispersions of board-like particles. Liquid Crystals, 2010, 37, 641-651.	2.2	41
90	Slanted stacking faults and persistent face centered cubic crystal growth in sedimentary colloidal hard sphere crystals. CrystEngComm, 2010, 12, 3820.	2.6	14

#	Article	IF	CITATIONS
91	Experimental Observation of Fractionated Crystallization in Polydisperse Platelike Colloids. Langmuir, 2010, 26, 6898-6901.	3.5	20
92	Lyotropic Hexagonal Columnar Liquid Crystals of Large Colloidal Gibbsite Platelets. Langmuir, 2010, 26, 14182-14187.	3.5	28
93	Structures and Phase Behavior in Mixtures of Charged Colloidal Spheres and Platelets. Langmuir, 2010, 26, 13614-13621.	3.5	36
94	Fabrication of Artificial Opals by Electric-Field-Assisted Vertical Deposition. Langmuir, 2010, 26, 2346-2351.	3.5	56
95	Onsager Revisited: Magnetic Field Induced Nematicâ^'Nematic Phase Separation in Dispersions of Goethite Nanorods. Journal of Physical Chemistry Letters, 2010, 1, 2174-2178.	4.6	26
96	Diffuse scattering in random-stacking hexagonal close-packed crystals of colloidal hard spheres. Phase Transitions, 2010, 83, 107-114.	1.3	19
97	Behavior of the smectic A phase of colloidal goethite in a magnetic field. Soft Matter, 2010, 6, 4895.	2.7	9
98	Simple Rectangular Columnar Phase of Goethite Nanorods and Its Martensitic Transition to the Centered Rectangular Columnar Phase. Langmuir, 2010, 26, 1579-1582.	3.5	11
99	Disorder and diffuse X-ray scattering in colloidal and photonic crystals. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s59-s59.	0.3	0
100	Defect engineering in colloidal photonic crystals. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s242-s242.	0.3	0
101	Experimental Realization of Biaxial Liquid Crystal Phases in Colloidal Dispersions of Boardlike Particles. Physical Review Letters, 2009, 103, 258301.	7.8	107
102	Devitrification of the glassy state in suspensions of charged platelets. Journal of Physics Condensed Matter, 2009, 21, 474218.	1.8	7
103	Determination of the real structure of artificial and natural opals on the basis of three-dimensional reconstructions of reciprocal space. JETP Letters, 2009, 90, 272-277.	1.4	20
104	Double Stacking Faults in Convectively Assembled Crystals of Colloidal Spheres. Langmuir, 2009, 25, 10408-10412.	3.5	54
105	Structural and magnetic properties of inverse opal photonic crystals studied by x-ray diffraction, scanning electron microscopy, and small-angle neutron scattering. Physical Review B, 2009, 79, .	3.2	24
106	Ultrasmall-angle X-ray scattering analysis of photonic crystal structure. Journal of Experimental and Theoretical Physics, 2009, 109, 29-34.	0.9	13
107	Solâ^'Gel Transitions and Liquid Crystal Phase Transitions in Concentrated Aqueous Suspensions of Colloidal Gibbsite Platelets. Journal of Physical Chemistry B, 2009, 113, 11604-11613.	2.6	66
108	Structure and Growth of Polymeric Niobia-Silica Mixed-Oxide Sols for Microporous Molecular Sieving Membranes: A SAXS Study. Chemistry of Materials, 2009, 21, 1822-1828.	6.7	28

#	Article	IF	CITATIONS
109	Microporous Niobia–Silica Membrane with Very Low CO ₂ Permeability. ChemSusChem, 2008, 1, 437-443.	6.8	68
110	Synthesis and characterization of {Mo72Fe30}-coated large hexagonal gibbsite γ-Al(OH)3 platelets. Dalton Transactions, 2008, , 2861.	3.3	14
111	Monte Carlo simulations of in-plane stacking disorder in hard-sphere crystals. Physical Review E, 2008, 77, 010401.	2.1	3
112	Extended Structure Design with Simple Molybdenum Oxide Building Blocks and Urea As a Directing Agent. Inorganic Chemistry, 2008, 47, 6863-6866.	4.0	9
113	Structure of the repulsive gel/glass in suspensions of charged colloidal platelets. Journal of Physics Condensed Matter, 2008, 20, 494201.	1.8	17
114	Chromium-modified goethite in an external magnetic field. Journal of Physics Condensed Matter, 2008, 20, 404219.	1.8	6
115	Influence of polydispersity on the phase behavior of colloidal goethite. Journal of Chemical Physics, 2008, 129, 164715.	3.0	38
116	Confocal microscopy of geometrically frustrated hard sphere crystals. EPJ Applied Physics, 2008, 44, 21-28.	0.7	7
117	Fast Formation of Opal-like Columnar Colloidal Crystals. Langmuir, 2007, 23, 11343-11346.	3.5	27
118	In-Plane Stacking Disorder in Polydisperse Hard Sphere Crystals. Langmuir, 2007, 23, 3554-3560.	3.5	33
119	Second-type disorder in colloidal crystals. Europhysics Letters, 2007, 77, 58003.	2.0	11
120	Grain size effects on lateral islands in hard-sphere crystals. Europhysics Letters, 2007, 79, 56001.	2.0	6
121	Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field. Physical Review E, 2007, 75, 051408.	2.1	76
122	Synthesis of Goethite as a Model Colloid for Mineral Liquid Crystals. Chemistry of Materials, 2007, 19, 5538-5546.	6.7	59
123	A simple model for dynamic small-angle X-ray diffraction in colloidal crystals. Journal of Applied Crystallography, 2007, 40, 144-150.	4.5	3
124	Monitoring the coordination of aluminium during microporous oxide crystallisation by in situ soft X-ray absorption spectroscopy. Chemical Communications, 2006, , 4410.	4.1	28
125	InÂSituImaging of Field-Induced Hexagonal Columns in Magnetite Ferrofluids. Physical Review Letters, 2006, 97, 185702.	7.8	176
126	Microradian X-ray diffraction in colloidal photonic crystals. Journal of Applied Crystallography, 2006, 39, 137-144.	4.5	94

#	Article	IF	CITATIONS
127	Characterization of Photonic Colloidal Single Crystals by Microradian X-ray Diffraction. Advanced Materials, 2006, 18, 1662-1666.	21.0	61
128	Smectic Liquid-Crystalline Order in Suspensions of Highly Polydisperse Goethite Nanorods. Advanced Materials, 2006, 18, 2565-2568.	21.0	99
129	Magnetic-field-induced orientational order in the isotropic phase of hard colloidal platelets. Physical Review E, 2006, 73, 041402.	2.1	84
130	Coexistence of rhcp and fcc phases in hard-sphere colloidal crystals. Europhysics Letters, 2005, 72, 962-968.	2.0	59
131	Structure of hard-sphere colloid observed in real space by spin-echo small-angle neutron scattering. Physica B: Condensed Matter, 2005, 357, 452-455.	2.7	2
132	Evidence of the hexagonal columnar liquid-crystal phase of hard colloidal platelets by high-resolution SAXS. European Physical Journal E, 2005, 16, 253-258.	1.6	49
133	Unraveling the Crystallization Mechanism of CoAPO-5 Molecular Sieves under Hydrothermal Conditions. Journal of the American Chemical Society, 2005, 127, 14454-14465.	13.7	128
134	Observation of a Hexatic Columnar Liquid Crystal of Polydisperse Colloidal Disks. Physical Review Letters, 2005, 95, 077801.	7.8	62
135	Destruction of long-range order recorded within situsmall-angle x-ray diffraction in drying colloidal crystals. Physical Review E, 2004, 69, 031405.	2.1	21
136	Nonlinear optical scattering: The concept of effective susceptibility. Physical Review B, 2004, 70, .	3.2	150
137	Small-angle neutron and X-ray scattering of dispersions of oleic-acid-coated magnetic iron particles. Journal of Applied Crystallography, 2004, 37, 847-856.	4.5	40
138	Depletion-induced colloidal crystals at a wall characterised by small-angle X-ray diffraction. Journal of Applied Crystallography, 2003, 36, 597-601.	4.5	1
139	Structural transitions of hard-sphere colloids studied by spin-echo small-angle neutron scattering. Journal of Applied Crystallography, 2003, 36, 1417-1423.	4.5	55
140	Bragg Rods and Multiple X-Ray Scattering in Random-Stacking Colloidal Crystals. Physical Review Letters, 2003, 90, 028304.	7.8	73
141	Vibrational Sum Frequency Scattering from a Submicron Suspension. Physical Review Letters, 2003, 91, 258302.	7.8	135
142	High-Resolution Small-Angle X-Ray Diffraction Study of Long-Range Order in Hard-Sphere Colloidal Crystals. Physical Review Letters, 2002, 88, 208301.	7.8	57
143	Polymer Polydispersity Effect on Depletion Interaction between Colloidal Particles. Macromolecular Theory and Simulations, 2002, 11, 975-984.	1.4	37
144	Strong self- and cross-phase modulation effects in chromium-doped KTiOPO4 crystals. Journal of Applied Physics, 2001, 90, 1698-1702.	2.5	0

#	Article	IF	CITATIONS
145	Reconstructions of Diamond (100) and (111) Surfaces: Accuracy of the Brenner Potential. Physica Status Solidi A, 2000, 181, 109-114.	1.7	18
146	Growth and magnetic properties of Fe films on vicinal to (001) substrates. Journal of Applied Physics, 2000, 87, 6092-6094.	2.5	5
147	(Meta)stable reconstructions of the diamond (111) surface: Interplay between diamond and graphitelike bonding. Physical Review B, 2000, 61, R10590-R10593.	3.2	20
148	Strong Surface State Effects in Nonlinear Magneto-optical Response of Ni(110). Physical Review Letters, 2000, 84, 2002-2005.	7.8	13
149	Surface-induced transverse magneto-optical Kerr effect. Physical Review B, 1999, 59, 4211-4214.	3.2	9
150	Reconstruction of Diamond (001) Surface: A Monte Carlo Study with the Tersoff Potential. Physica Status Solidi A, 1999, 174, 19-23.	1.7	8
151	A Model for Second Harmonic Generation from Magnetized Surfaces. Physica Status Solidi A, 1998, 170, 227-233.	1.7	1
152	Energy Exchange in Second-Order Nonlinear Optics in Centrosymmetric Media. Physica Status Solidi A, 1998, 170, 417-422.	1.7	0
153	Phase-sensitive detection technique for surface nonlinear optics. Physical Review B, 1998, 58, R16020-R16023.	3.2	37
154	Energy Conservation and the Manley-Rowe Relations in Surface Nonlinear-Optical Spectroscopy. Physical Review Letters, 1998, 81, 566-569.	7.8	20
155	Anisotropic third-order magneto-optical Kerr effect. Journal of Applied Physics, 1998, 83, 6742-6744.	2.5	9
156	Magnetic dipolium model of magnetization-induced surface second harmonic generation. IEEE Transactions on Magnetics, 1998, 34, 1048-1050.	2.1	2
157	Domain and domain wall contributions to optical second harmonic generation in thin magnetic films. Journal of Applied Physics, 1997, 81, 5668-5670.	2.5	11
158	Theory of nonlinear magneto-optical imaging of magnetic domains and domain walls. Physical Review B, 1997, 56, 2680-2687.	3.2	51
159	Effect of molecular mobility on kinetics of an electrochemical Langmuir-Hinshelwood reaction. Chemical Physics Letters, 1997, 277, 539-544.	2.6	66
160	On the origin of surface second harmonic anisotropy on Ag(111) at low frequencies. Surface Science, 1996, 347, 143-150.	1.9	16
161	Experimental evidence of the origin of rotational anisotropy in second harmonic generation from vicinal Al surfaces. Surface Science, 1996, 369, 265-276.	1.9	9
162	Sum-frequency generation on isotropic surfaces: General phenomenology and microscopic theory for jellium surfaces. Physical Review B, 1995, 52, 16901-16911.	3.2	29

ANDREI V PETUKHOV

#	Article	IF	CITATIONS
163	Surface anisotropy in optical second harmonic generation. I. Al(111). Surface Science, 1995, 334, 195-208.	1.9	34
164	Surface anisotropy in optical second harmonic generation II. Embedding approach to Al(111) and vicinal Al(001) surfaces. Surface Science, 1995, 340, 1-15.	1.9	15
165	Theory of second harmonic generation from metal surfaces: frequency dependence and penetration depth of surface anisotropy of Al(111). Surface Science, 1994, 320, L51-L56.	1.9	18
166	Contributions of Short-Range and Classical Electromagnetic Mechanisms to Surface-Enhanced Raman Scattering from Several Types of Biomolecules Adsorbed on Cold-Deposited Island Films. Applied Spectroscopy, 1993, 47, 515-522.	2.2	39
167	Isotropic and anisotropic bulk contributions to second-harmonic generation from simple metals. Surface Science, 1993, 294, 381-402.	1.9	25
168	Second optical harmonic generation in the vicinity of insulator-to-metal transition in polyaniline film. Synthetic Metals, 1993, 54, 327-330.	3.9	1
169	Electromagnetic mechanism of surface enhanced second harmonic generation by "smooth―silver electrodes and scanning tunneling microscopy. Solid State Communications, 1990, 76, 55-59.	1.9	20
170	Source of a strong anisotropy of quadrupole-allowed second-order nonlinear polarizability of the noble-metal surfaces. Physical Review B, 1990, 42, 9387-9390.	3.2	18