Jae-Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2317968/publications.pdf

Version: 2024-02-01

279798 454955 2,606 30 23 30 citations h-index g-index papers 30 30 30 3416 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Overview of biochar production from preservative-treated wood with detailed analysis of biochar characteristics, heavy metals behaviors, and their ecotoxicity. Journal of Hazardous Materials, 2020, 384, 121356.	12.4	73
2	Premethylation of Lignin Hydroxyl Functionality for Improving Storage Stability of Oil from Solvent Liquefaction. Energy & Storage Stability of Oil from Solvent Liquefaction. Energy & Storage Stability of Oil from Solvent Liquefaction.	5.1	10
3	Recent progress in the thermal and catalytic conversion of lignin. Renewable and Sustainable Energy Reviews, 2019, 111, 422-441.	16.4	141
4	Improving Lignin Homogeneity and Functionality via Ethanolysis for Production of Antioxidants. ACS Sustainable Chemistry and Engineering, 2019, 7, 3520-3526.	6.7	37
5	Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 2019, 279, 373-384.	9.6	175
6	Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. International Journal of Biological Macromolecules, 2018, 106, 793-802.	7.5	97
7	Effects of phenolic hydroxyl functionality on lignin pyrolysis over zeolite catalyst. Fuel, 2018, 232, 81-89.	6.4	44
8	Sequential solvent fractionation of lignin for selective production of monoaromatics by Ru catalyzed ethanolysis. RSC Advances, 2017, 7, 53117-53125.	3.6	33
9	Comparison of degradation features of lignin to phenols over Pt catalysts prepared with various forms of carbon supports. RSC Advances, 2016, 6, 16917-16924.	3.6	9
10	Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical tert-butanol. Journal of Analytical and Applied Pyrolysis, 2015, 113, 99-106.	5 . 5	70
11	Conversion of Lignin to Phenol-Rich Oil Fraction under Supercritical Alcohols in the Presence of Metal Catalysts. Energy & Discourge (2015), 29, 5154-5163.	5.1	98
12	Structural features of lignin-rich solid residues obtained from two-step acid-hydrolysis of Miscanthus biomass (Miscanthus sacchariflorus Benth.). Journal of Industrial and Engineering Chemistry, 2015, 30, 302-308.	5 . 8	5
13	Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon. Journal of Analytical and Applied Pyrolysis, 2015, 114, 273-280.	5 . 5	125
14	Predicting structural change of lignin macromolecules before and after heat treatment using the pyrolysis-GC/MS technique. Journal of Analytical and Applied Pyrolysis, 2014, 110, 305-312.	5 . 5	22
15	Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis. Energy, 2014, 68, 437-443.	8.8	71
16	Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis. Energy, 2014, 76, 284-291.	8.8	37
17	Investigation of structural modification and thermal characteristics of lignin after heat treatment. International Journal of Biological Macromolecules, 2014, 66, 57-65.	7.5	92
18	Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (Populus albaglandulosa). Polymer Degradation and Stability, 2013, 98, 1671-1678.	5 . 8	83

#	Article	IF	CITATIONS
19	Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza) Tj ETQq1 1 C 128, 664-672.	0.784314 r 9 . 6	rgBT /Over <mark>lo</mark> 77
20	Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol. Chemosphere, 2013, 93, 1755-1764.	8.2	78
21	Structural properties of pretreated biomass from different acid pretreatments and their effects on simultaneous saccharification and ethanol fermentation. Bioresource Technology, 2013, 139, 214-219.	9.6	27
22	Characterization of pyrolytic products obtained from fast pyrolysis of chromated copper arsenate (CCA)- and alkaline copper quaternary compounds (ACQ)-treated wood biomasses. Journal of Hazardous Materials, 2012, 227-228, 445-452.	12.4	29
23	Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology, 2012, 118, 158-162.	9.6	485
24	Evaluation of the antifungal effects of bio-oil prepared with lignocellulosic biomass using fast pyrolysis technology. Chemosphere, 2012, 89, 688-693.	8.2	23
25	Study on the thermal decomposition features and kinetics of demineralized and inorganic metal-impregnated lignocellulosic biomass. Journal of Industrial and Engineering Chemistry, 2012, 18, 2069-2075.	5.8	20
26	The effect of storage duration on bio-oil properties. Journal of Analytical and Applied Pyrolysis, 2012, 95, 118-125.	5.5	86
27	Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresource Technology, 2012, 104, 687-694.	9.6	257
28	Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresource Technology, 2011, 102, 9020-9025.	9.6	146
29	Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresource Technology, 2011, 102, 3437-3444.	9.6	138
30	Characterization of lignin-rich residues remaining after continuous super-critical water hydrolysis of poplar wood (Populus albaglandulosa) for conversion to fermentable sugars. Bioresource Technology, 2011, 102, 5912-5916.	9.6	18