
Jae-Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2317968/publications.pdf Version: 2024-02-01

INF-YOUNG KIM

#	Article	IF	CITATIONS
1	Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology, 2012, 118, 158-162.	9.6	485
2	Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresource Technology, 2012, 104, 687-694.	9.6	257
3	Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 2019, 279, 373-384.	9.6	175
4	Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresource Technology, 2011, 102, 9020-9025.	9.6	146
5	Recent progress in the thermal and catalytic conversion of lignin. Renewable and Sustainable Energy Reviews, 2019, 111, 422-441.	16.4	141
6	Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresource Technology, 2011, 102, 3437-3444.	9.6	138
7	Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon. Journal of Analytical and Applied Pyrolysis, 2015, 114, 273-280.	5.5	125
8	Conversion of Lignin to Phenol-Rich Oil Fraction under Supercritical Alcohols in the Presence of Metal Catalysts. Energy & Fuels, 2015, 29, 5154-5163.	5.1	98
9	Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. International Journal of Biological Macromolecules, 2018, 106, 793-802.	7.5	97
10	Investigation of structural modification and thermal characteristics of lignin after heat treatment. International Journal of Biological Macromolecules, 2014, 66, 57-65.	7.5	92
11	The effect of storage duration on bio-oil properties. Journal of Analytical and Applied Pyrolysis, 2012, 95, 118-125.	5.5	86
12	Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (Populus albaglandulosa). Polymer Degradation and Stability, 2013, 98, 1671-1678.	5.8	83
13	Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol. Chemosphere, 2013, 93, 1755-1764.	8.2	78
14	Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza) Tj ETQq0 0 C 128, 664-672.) rgBT /Ov 9.6	erlock 10 Tf 77
15	Overview of biochar production from preservative-treated wood with detailed analysis of biochar characteristics, heavy metals behaviors, and their ecotoxicity. Journal of Hazardous Materials, 2020, 384, 121356.	12.4	73
16	Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis. Energy, 2014, 68, 437-443.	8.8	71
17	Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical tert-butanol. Journal of Analytical and Applied Pyrolysis, 2015, 113, 99-106.	5.5	70
18	Effects of phenolic hydroxyl functionality on lignin pyrolysis over zeolite catalyst. Fuel, 2018, 232, 81-89.	6.4	44

JAE-YOUNG KIM

#	Article	IF	CITATIONS
19	Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis. Energy, 2014, 76, 284-291.	8.8	37
20	Improving Lignin Homogeneity and Functionality via Ethanolysis for Production of Antioxidants. ACS Sustainable Chemistry and Engineering, 2019, 7, 3520-3526.	6.7	37
21	Sequential solvent fractionation of lignin for selective production of monoaromatics by Ru catalyzed ethanolysis. RSC Advances, 2017, 7, 53117-53125.	3.6	33
22	Characterization of pyrolytic products obtained from fast pyrolysis of chromated copper arsenate (CCA)- and alkaline copper quaternary compounds (ACQ)-treated wood biomasses. Journal of Hazardous Materials, 2012, 227-228, 445-452.	12.4	29
23	Structural properties of pretreated biomass from different acid pretreatments and their effects on simultaneous saccharification and ethanol fermentation. Bioresource Technology, 2013, 139, 214-219.	9.6	27
24	Evaluation of the antifungal effects of bio-oil prepared with lignocellulosic biomass using fast pyrolysis technology. Chemosphere, 2012, 89, 688-693.	8.2	23
25	Predicting structural change of lignin macromolecules before and after heat treatment using the pyrolysis-GC/MS technique. Journal of Analytical and Applied Pyrolysis, 2014, 110, 305-312.	5.5	22
26	Study on the thermal decomposition features and kinetics of demineralized and inorganic metal-impregnated lignocellulosic biomass. Journal of Industrial and Engineering Chemistry, 2012, 18, 2069-2075.	5.8	20
27	Characterization of lignin-rich residues remaining after continuous super-critical water hydrolysis of poplar wood (Populus albaglandulosa) for conversion to fermentable sugars. Bioresource Technology, 2011, 102, 5912-5916.	9.6	18
28	Premethylation of Lignin Hydroxyl Functionality for Improving Storage Stability of Oil from Solvent Liquefaction. Energy & Fuels, 2019, 33, 1248-1255.	5.1	10
29	Comparison of degradation features of lignin to phenols over Pt catalysts prepared with various forms of carbon supports. RSC Advances, 2016, 6, 16917-16924.	3.6	9
30	Structural features of lignin-rich solid residues obtained from two-step acid-hydrolysis of Miscanthus biomass (Miscanthus sacchariflorus Benth.). Journal of Industrial and Engineering Chemistry, 2015, 30, 302-308.	5.8	5