Xiaochun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2317854/publications.pdf Version: 2024-02-01

Хилосним Ун

#	Article	IF	CITATIONS
1	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
2	Pre-ribosomal RNA reorganizes DNA damage repair factors in nucleus during meiotic prophase and DNA damage response. Cell Research, 2022, 32, 254-268.	12.0	15
3	Truncated PARP1 mediates ADP-ribosylation of RNA polymerase III for apoptosis. Cell Discovery, 2022, 8, 3.	6.7	20
4	Functional defects of cancer-associated MDC1 mutations in DNA damage repair. DNA Repair, 2022, 114, 103330.	2.8	2
5	Ribosomal RNA regulates chromosome clustering during mitosis. Cell Discovery, 2022, 8, .	6.7	7
6	Cancer-associated 53BP1 mutations induce DNA damage repair defects. Cancer Letters, 2021, 501, 43-54.	7.2	7
7	ATR prevents Ca 2+ overloadâ€induced necrotic cell death through phosphorylationâ€mediated inactivation of PARP1 without DNA damage signaling. FASEB Journal, 2021, 35, e21373.	0.5	4
8	OGA is associated with deglycosylation of NONO and the KU complex during DNA damage repair. Cell Death and Disease, 2021, 12, 622.	6.3	11
9	ATR/ATM-Mediated Phosphorylation of BRCA1 T1394 Promotes Homologous Recombinational Repair and G2–M Checkpoint Maintenance. Cancer Research, 2021, 81, 4676-4684.	0.9	14
10	ADP-ribosylhydrolases: from DNA damage repair to COVID-19. Journal of Zhejiang University: Science B, 2021, 22, 21-30.	2.8	2
11	ADPâ€ribosylation of histone variant H2AX promotes base excision repair. EMBO Journal, 2021, 40, e104542.	7.8	32
12	The RNF20/40 complex regulates p53-dependent gene transcription and mRNA splicing. Journal of Molecular Cell Biology, 2020, 12, 113-124.	3.3	16
13	Functional deficiency of DNA repair gene EXO5 results in androgen-induced genomic instability and prostate tumorigenesis. Oncogene, 2020, 39, 1246-1259.	5.9	8
14	Silencing of CHFR Sensitizes Gastric Carcinoma to PARP Inhibitor Treatment. Translational Oncology, 2020, 13, 113-121.	3.7	7
15	Tissue-Specific Carcinogens as Soil to Seed BRCA1/2-Mutant Hereditary Cancers. Trends in Cancer, 2020, 6, 559-568.	7.4	11
16	Molecular basis for the MacroD1-mediated hydrolysis of ADP-ribosylation. DNA Repair, 2020, 94, 102899.	2.8	15
17	AI26 inhibits the ADP-ribosylhydrolase ARH3 and suppresses DNA damage repair. Journal of Biological Chemistry, 2020, 295, 13838-13849.	3.4	8
18	Targeting dePARylation for cancer therapy. Cell and Bioscience, 2020, 10, 7.	4.8	20

Χιαοςημη Υυ

#	Article	IF	CITATIONS
19	Poly(ADP-ribosyl)ation mediates early phase histone eviction at DNA lesions. Nucleic Acids Research, 2020, 48, 3001-3013.	14.5	29
20	Selective targeting of TET catalytic domain promotes somatic cell reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3621-3626.	7.1	44
21	Targeting dePARylation selectively suppresses DNA repair–defective and PARP inhibitor–resistant malignancies. Science Advances, 2019, 5, eaav4340.	10.3	57
22	8â€chloroâ€adenosine activity in FLT3â€ITD acute myeloid leukemia. Journal of Cellular Physiology, 2019, 234, 16295-16303.	4.1	12
23	The role of dePARylation in DNA damage repair and cancer suppression. DNA Repair, 2019, 76, 20-29.	2.8	7
24	NADP+ is an endogenous PARP inhibitor in DNA damage response and tumor suppression. Nature Communications, 2019, 10, 693.	12.8	45
25	Human DNA ligase IV is able to use NAD+ as an alternative adenylation donor for DNA ends ligation. Nucleic Acids Research, 2019, 47, 1321-1334.	14.5	22
26	Poly-ADP ribosylation in DNA damage response and cancer therapy. Mutation Research - Reviews in Mutation Research, 2019, 780, 82-91.	5.5	61
27	Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Research, 2018, 46, 3446-3457.	14.5	88
28	EFEMP2 Mediates GALNT14-Dependent Breast Cancer Cell Invasion. Translational Oncology, 2018, 11, 346-352.	3.7	15
29	GALNT14 Involves the Regulation of Multidrug Resistance in Breast Cancer Cells. Translational Oncology, 2018, 11, 786-793.	3.7	19
30	Structure–function analyses reveal the mechanism of the ARH3-dependent hydrolysis of ADP-ribosylation. Journal of Biological Chemistry, 2018, 293, 14470-14480.	3.4	17
31	Molecular basis for the inhibition of the methyl-lysine binding function of 53BP1 by TIRR. Nature Communications, 2018, 9, 2689.	12.8	17
32	SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function. Cell Stem Cell, 2018, 23, 355-369.e9.	11.1	68
33	PARP2 mediates branched poly ADP-ribosylation in response to DNA damage. Nature Communications, 2018, 9, 3233.	12.8	114
34	LGR5 regulates gastric adenocarcinoma cell proliferation and invasion via activating Wnt signaling pathway. Oncogenesis, 2018, 7, 57.	4.9	20
35	Antileukemic Activity of 8-Chloro-Adenosine (8-Cl-Ado) Is Mediated By Mir-155 Degradation and ErbB3 Binding Protein (Ebp1)-Dependent p53 Activation: A Novel Therapeutic Approach for FLT3-ITD Acute Myeloid Leukemia (AML). Blood, 2018, 132, 3938-3938.	1.4	0
36	UHRF2 regulates local 5-methylcytosine and suppresses spontaneous seizures. Epigenetics, 2017, 12, 551-560.	2.7	14

Χιαοςημη Υυ

#	Article	IF	CITATIONS
37	CTCF participates in DNA damage response via poly(ADP-ribosyl)ation. Scientific Reports, 2017, 7, 43530.	3.3	25
38	The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Research, 2017, 45, 8129-8141.	14.5	157
39	Targeting reactive nitrogen species suppresses hereditary pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7106-7111.	7.1	11
40	Chemopreventive Effects of ROS Targeting in a Murine Model of BRCA1-Deficient Breast Cancer. Cancer Research, 2017, 77, 448-458.	0.9	40
41	Zinc Finger Protein 618 Regulates the Function of UHRF2 (Ubiquitin-like with PHD and Ring Finger) Tj ETQq1 1 13679-13688.	0.784314 r 3.4	gBT /Overloc 17
42	OGT restrains the expansion of DNA damage signaling. Nucleic Acids Research, 2016, 44, gkw663.	14.5	40
43	A special issue on the DNA damage response and genomic instability. Acta Biochimica Et Biophysica Sinica, 2016, 48, 593-593.	2.0	0
44	Functions of PARylation in DNA Damage Repair Pathways. Genomics, Proteomics and Bioinformatics, 2016, 14, 131-139.	6.9	215
45	TET2 Activity Is Modulated By SIRT1-Mediated Protein Deacetylation: A Potential Therapeutic Target in Myelodysplastic Syndrome. Blood, 2016, 128, 1053-1053.	1.4	0
46	Poly(ADP-Ribose) Mediates the BRCA2-Dependent Early DNA Damage Response. Cell Reports, 2015, 13, 678-689.	6.4	43
47	Topoisomerase II Regulates the Maintenance of DNA Methylation. Journal of Biological Chemistry, 2015, 290, 851-860.	3.4	15
48	Double-strand break repair on sex chromosomes: challenges during male meiotic prophase. Cell Cycle, 2015, 14, 516-525.	2.6	37
49	The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response. Nucleic Acids Research, 2015, 43, 10782-10794.	14.5	53
50	CHFR is important for the survival of male premeiotic germ cells. Cell Cycle, 2015, 14, 3454-3460.	2.6	5
51	ADP-Ribosyltransferases and Poly ADP-Ribosylation. Current Protein and Peptide Science, 2015, 16, 491-501.	1.4	76
52	Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage. BMB Reports, 2015, 48, 354-359.	2.4	9
53	The zinc finger proteins ZNF644 and WIZ regulate the G9a/GLP complex for gene repression. ELife, 2015, 4, .	6.0	40
54	The oligonucleotide/oligosaccharide-binding fold motif is a poly(ADP-ribose)-binding domain that mediates DNA damage response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7278-7283.	7.1	55

Χιαοςημη Υυ

#	Article	IF	CITATIONS
55	Regulation of the DNA damage response on male meiotic sex chromosomes. Nature Communications, 2013, 4, 2105.	12.8	28
56	Function of BRCA1 in the DNA Damage Response Is Mediated by ADP-Ribosylation. Cancer Cell, 2013, 23, 693-704.	16.8	261
57	The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes and Development, 2013, 27, 1752-1768.	5.9	132
58	RNF8-Dependent Histone Modifications Regulate Nucleosome Removal during Spermatogenesis. Developmental Cell, 2010, 18, 371-384.	7.0	200
59	RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly. Cell, 2007, 131, 901-914.	28.9	906
60	BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes and Development, 2006, 20, 1721-1726.	5.9	254
61	Chfr is required for tumor suppression and Aurora A regulation. Nature Genetics, 2005, 37, 401-406.	21.4	199
62	53BP1 Cooperates with p53 and Functions as a Haploinsufficient Tumor Suppressor in Mice. Molecular and Cellular Biology, 2005, 25, 10079-10086.	2.3	80
63	DNA Damage-Induced Cell Cycle Checkpoint Control Requires CtIP, a Phosphorylation-Dependent Binding Partner of BRCA1 C-Terminal Domains. Molecular and Cellular Biology, 2004, 24, 9478-9486.	2.3	355
64	Structural Basis of BACH1 Phosphopeptide Recognition by BRCA1 Tandem BRCT Domains. Structure, 2004, 12, 1137-1146.	3.3	87
65	Phosphopeptide Binding Specificities of BRCA1 COOH-terminal (BRCT) Domains. Journal of Biological Chemistry, 2003, 278, 52914-52918.	3.4	206
66	The BRCT Domain Is a Phospho-Protein Binding Domain. Science, 2003, 302, 639-642.	12.6	770
67	The impact of TOPBP1 mutations in human cancers on the DNA damage response. Genome Instability & Disease, 0, , .	1.1	0