Chen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2317523/publications.pdf

Version: 2024-02-01

471371 345118 2,257 39 17 36 citations h-index g-index papers 42 42 42 4175 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolkâ€5tructured Carbon Nanocomposites. Angewandte Chemie - International Edition, 2011, 50, 6799-6802.	7.2	674
2	Core-shell Fe ₃ O ₄ @SiO ₂ nanoparticles synthesized with well-dispersed hydrophilic Fe ₃ O ₄ seeds. Nanoscale, 2011, 3, 701-705.	2.8	284
3	Large-Scale Fe ₃ O ₄ Nanoparticles Soluble in Water Synthesized by a Facile Method. Journal of Physical Chemistry C, 2008, 112, 11336-11339.	1.5	264
4	Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells. Physical Review Letters, 2014, 112, 156103.	2.9	258
5	From atomic structure to photovoltaic properties in CdTe solar cells. Ultramicroscopy, 2013, 134, 113-125.	0.8	80
6	Direct Imaging of Cl―and Cuâ€Induced Shortâ€Circuit Efficiency Changes in CdTe Solar Cells. Advanced Energy Materials, 2014, 4, 1400454.	10.2	79
7	In-depth analysis of chloride treatments for thin-film CdTe solar cells. Nature Communications, 2016, 7, 13231.	5 . 8	74
8	Molecular structure of vapor-deposited amorphous selenium. Journal of Applied Physics, 2016, 120, .	1.1	68
9	An improved FIB sample preparation technique for site-specific plan-view specimens: A new cutting geometry. Ultramicroscopy, 2018, 184, 310-317.	0.8	57
10	Physics of grain boundaries in polycrystalline photovoltaic semiconductors. Journal of Applied Physics, $2015,117,.$	1.1	52
11	Carrier Separation at Dislocation Pairs in CdTe. Physical Review Letters, 2013, 111, 096403.	2.9	51
12	Recyclable oleic acid modified magnetic NiFe2O4 nanoparticles for catalytic aquathermolysis of Liaohe heavy oil. Fuel, 2017, 200, 193-198.	3.4	38
13	Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity. Materials Science in Semiconductor Processing, 2017, 65, 64-76.	1.9	36
14	Nanoscale doping profiles within CdTe grain boundaries and at the CdS/CdTe interface revealed by atom probe tomography and STEM EBIC. Solar Energy Materials and Solar Cells, 2016, 150, 95-101.	3.0	35
15	S–Te Interdiffusion within Grains and Grain Boundaries in CdTe Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1636-1643.	1.5	28
16	Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applications. ACS Applied Nano Materials, 2020, 3, 3859-3867.	2.4	23
17	Patterned boron nanowires and field emission properties. Applied Physics Letters, 2009, 94, .	1.5	17
18	Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios. Chinese Physics B, 2011, 20, 076103.	0.7	13

#	Article	IF	CITATIONS
19	Synthesis of monodisperse CoPt3 nanocrystals and their catalytic behavior for growth of boron nanowires. Nano Research, 2011, 4, 780-787.	5.8	12
20	Fabrication of patterned boron carbide nanowires and their electrical, field emission, and flexibility properties. Nano Research, 2012, 5, 896-902.	5.8	12
21	Direct Electronic Property Imaging of a Nanocrystal-Based Photovoltaic Device by Electron Beam-Induced Current via Scanning Electron Microscopy. Journal of Physical Chemistry Letters, 2014, 5, 856-860.	2.1	12
22	A simple method to clean ligand contamination on TEM grids. Ultramicroscopy, 2021, 221, 113195.	0.8	12
23	Atomic-scale tuning of self-assembled ZnO microscopic patterns: from dendritic fractals to compact island. Nanoscale, 2010, 2, 2557.	2.8	11
24	Synthesis and properties of Auâ€"Fe ₃ O ₄ and Agâ€"Fe ₃ O ₄ heterodimeric nanoparticles. Chinese Physics B, 2010, 19, 066102.	0.7	10
25	Stacking fault reduction during annealing in Cu-poor CuInSe2 thin film solar cell absorbers analyzed by <i>in situ</i> XRD and grain growth modeling. Journal of Applied Physics, 2019, 125, .	1.1	10
26	Field emission properties of patterned boron nanocones. Nanotechnology, 2010, 21, 325705.	1.3	7
27	Column-by-column observation of dislocation motion in CdTe: Dynamic scanning transmission electron microscopy. Applied Physics Letters, 2016, 109, .	1.5	6
28	The structure of a propagating MgAl $<$ sub $>2<$ sub $>0<$ sub $>4<$ sub $>/$ MgO interface: linked atomic- and \hat{l} 4m-scale mechanisms of interface motion. Philosophical Magazine, 2016, 96, 2488-2503.	0.7	6
29	Tuning field emission properties of boron nanocones with catalyst concentration. Chinese Physics B, 2011, 20, 037903.	0.7	5
30	Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 466-480.	0.0	5
31	Secondary-Phase-Assisted Grain Boundary Migration in CulnSe2. Physical Review Letters, 2020, 124, 095702.	2.9	5
32	In-situ observations of recrystallization in CuInSe2 solar cells via STEM. Microscopy and Microanalysis, 2018, 24, 1492-1493.	0.2	4
33	Core Structures of Dislocations within CdTe Grains. Materials Research Society Symposia Proceedings, 2013, 1526, 1.	0.1	3
34	Shuffling Atomic Layer Deposition Gas Sequences to Modulate Bimetallic Thin Films and Nanoparticle Properties. Chemistry of Materials, 2022, 34, 6142-6154.	3.2	3
35	Influence of Si Co-doping on electrical transport properties of magnesium-doped boron nanoswords. Applied Physics Letters, 2012, 100, 103112.	1.5	2
36	APT mass spectrometry and SEM data for CdTe solar cells. Data in Brief, 2016, 7, 779-785.	0.5	1

#	Article	IF	CITATIONS
37	Fabrication of patterned boron-based nanowires and their field emission properties. , 2015, , .		O
38	Atomic Structure and Properties of Dislocations and Grain Boundaries. , 2016, , .		0
39	Hole-Induced Spontaneous Mutual Annihilation of Dislocation Pairs. Journal of Physical Chemistry Letters, 2019, 10, 7421-7425.	2.1	0