Giovanni Palmisano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2317087/publications.pdf

Version: 2024-02-01

66911 71102 6,576 122 41 78 citations h-index g-index papers 132 132 132 7467 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Photocatalysis: a promising route for 21st century organic chemistry. Chemical Communications, 2007, , 3425.	4.1	613
2	Nanostructured Rutile TiO ₂ for Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in Water. Journal of the American Chemical Society, 2008, 130, 1568-1569.	13.7	430
3	Advances in selective conversions by heterogeneous photocatalysis. Chemical Communications, 2010, 46, 7074.	4.1	344
4	Flexible Solar Cells. ChemSusChem, 2008, 1, 880-891.	6.8	295
5	Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 224-245.	11.6	258
6	Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catalysis Today, 2020, 340, 209-224.	4.4	201
7	A review of material aspects in developing direct Z-scheme photocatalysts. Materials Today, 2021, 47, 75-107.	14.2	188
8	Photocatalytic Selective Oxidation of 4-Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home-Prepared Titanium Dioxide Catalyst. Advanced Synthesis and Catalysis, 2007, 349, 964-970.	4.3	180
9	Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature. Green Chemistry, 2009, 11, 510.	9.0	167
10	Solar hydrogen: fuel of the near future. Energy and Environmental Science, 2010, 3, 279.	30.8	126
11	Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis. Catalysis Today, 2007, 122, 118-127.	4.4	122
12	Oxidation of Aromatic Alcohols in Irradiated Aqueous Suspensions of Commercial and Homeâ€Prepared Rutile TiO ₂ : A Selectivity Study. Chemistry - A European Journal, 2008, 14, 4640-4646.	3.3	122
13	BIPV: merging the photovoltaic with the construction industry. Progress in Photovoltaics: Research and Applications, 2010, 18, 61-72.	8.1	119
14	One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Letters, 2006, 47, 6993-6995.	1.4	118
	<u>and the property of the control of </u>		
15	Titania Photocatalysts for Selective Oxidations in Water. ChemSusChem, 2011, 4, 1431-1438.	6.8	100
16	Titania Photocatalysts for Selective Oxidations in Water. ChemSusChem, 2011, 4, 1431-1438. Heterogeneous Photocatalysis and Photoelectrocatalysis: From Unselective Abatement of Noxious Species to Selective Production of High-Value Chemicals. Journal of Physical Chemistry Letters, 2015, 6, 1968-1981.	4.6	99
	Heterogeneous Photocatalysis and Photoelectrocatalysis: From Unselective Abatement of Noxious Species to Selective Production of High-Value Chemicals. Journal of Physical Chemistry Letters, 2015,		

#	Article	IF	CITATIONS
19	Synthesis and Surface Modification of TiO2-Based Photocatalysts for the Conversion of CO2. Catalysts, 2020, 10, 227.	3.5	94
20	Environmentally Friendly Photocatalytic Oxidation of Aromatic Alcohol to Aldehyde in Aqueous Suspension of Brookite TiO2. Catalysis Letters, 2008, 126, 58-62.	2.6	89
21	Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions. Chemical Communications, 2006, , 1012.	4.1	81
22	Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home-prepared titanium dioxide. Applied Catalysis A: General, 2008, 349, 182-188.	4.3	79
23	Synthesis of vanillin in water by TiO2 photocatalysis. Applied Catalysis B: Environmental, 2012, 111-112, 555-561.	20.2	79
24	<i>In situ</i> simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation. Energy and Environmental Science, 2018, 11, 383-393.	30.8	77
25	Halloysite nanotube with fluorinated lumen: Non-foaming nanocontainer for storage and controlled release of oxygen in aqueous media. Journal of Colloid and Interface Science, 2014, 417, 66-71.	9.4	76
26	Nanochemistry aspects of titania in dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 838.	30.8	75
27	Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home prepared titanium dioxide. Applied Catalysis A: General, 2008, 349, 189-197.	4.3	74
28	(Photo)catalyst Characterization Techniques., 2019,, 87-152.		74
29	Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties. Applied Energy, 2020, 264, 114697.	10.1	74
30	Current and future perspectives on catalytic-based integrated carbon capture and utilization. Science of the Total Environment, 2021, 790, 148081.	8.0	67
31	A new class of heterogeneous Pd catalysts for synthetic organic chemistry. Catalysis Science and Technology, 2011, 1, 736.	4.1	63
32	Home-prepared anatase, rutile, and brookite TiO2 for selective photocatalytic oxidation of 4-methoxybenzyl alcohol in water: reactivity and ATR-FTIR study. Photochemical and Photobiological Sciences, 2009, 8, 663-669.	2.9	62
33	Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 132-164.	11.6	54
34	The chemical effects of molecular sol–gel entrapment. Chemical Society Reviews, 2007, 36, 932-940.	38.1	52
35	Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO 2 films on glass. Applied Surface Science, 2017, 420, 83-93.	6.1	50
36	Selective photocatalytic oxidation of aromatic alcohols in solar-irradiated aqueous suspensions of Pt, Au, Pd and Ag loaded TiO 2 catalysts. Catalysis Today, 2017, 281, 53-59.	4.4	49

#	Article	IF	Citations
37	Overview on microfluidic reactors in photocatalysis: Applications of graphene derivatives. Catalysis Today, 2018, 315, 79-92.	4.4	49
38	Heterogeneous photocatalysis: guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catalysis Reviews - Science and Engineering, 2019, 61, 163-213.	12.9	49
39	3D printed photocatalytic feed spacers functionalized with \hat{l}^2 -FeOOH nanorods inducing pollutant degradation and membrane cleaning capabilities in water treatment. Applied Catalysis B: Environmental, 2022, 300, 120318.	20.2	49
40	Graphite-supported TiO2 for 4-nitrophenol degradation in a photoelectrocatalytic reactor. Chemical Engineering Journal, 2009, 155, 339-346.	12.7	47
41	Waste-Free Electrochemical Oxidation of Alcohols in Water. Advanced Synthesis and Catalysis, 2006, 348, 2033-2037.	4.3	46
42	Photocatalytic green synthesis of piperonal in aqueous TiO2 suspension. Applied Catalysis B: Environmental, 2014, 144, 607-613.	20.2	46
43	Electrodes Functionalized with the 2,2,6,6â€Tetramethylpiperidinyloxy Radical for the Wasteâ€Free Oxidation of Alcohols. ChemCatChem, 2015, 7, 552-558.	3.7	42
44	Micro-mesoporous N-doped brookite-rutile TiO2 as efficient catalysts for water remediation under UV-free visible LED radiation. Journal of Catalysis, 2017, 346, 109-116.	6.2	42
45	Advances in anti-scale magnetic water treatment. Environmental Science: Water Research and Technology, 2015, 1, 408-425.	2.4	40
46	Optical Properties of TiO2 Suspensions:  Influence of pH and Powder Concentration on Mean Particle Size. Industrial & Engineering Chemistry Research, 2007, 46, 7620-7626.	3.7	39
47	Self-assembled titania–silica–sepiolite based nanocomposites for water decontamination. Journal of Materials Chemistry, 2009, 19, 2070.	6.7	38
48	Sol-gel entrapped visible light photocatalysts for selective conversions. RSC Advances, 2014, 4, 18341-18346.	3.6	38
49	Selective oxidation of phenol and benzoic acid in water via home-prepared TiO2 photocatalysts: Distribution of hydroxylation products. Applied Catalysis A: General, 2012, 441-442, 79-89.	4.3	35
50	Photoelectrocatalytic selective oxidation of 4-methoxybenzyl alcohol in water by TiO2 supported on titanium anodes. Applied Catalysis B: Environmental, 2013, 132-133, 535-542.	20.2	35
51	E-beam evaporated TiO 2 and Cu-TiO 2 on glass: Performance in the discoloration of methylene blue and 2-propanol oxidation. Applied Catalysis A: General, 2016, 526, 191-199.	4.3	34
52	Photocatalytic ozonation under visible light for the remediation of water effluents and its integration with an electro-membrane bioreactor. Chemosphere, 2018, 209, 534-541.	8.2	33
53	Photocatalytic oxidation of nitrobenzene and phenylamine: Pathways and kinetics. AICHE Journal, 2007, 53, 961-968.	3.6	31
54	TiO ₂ /ORMOSIL Thin Films Doped with Phthalocyanine Dyes:  New Photocatalytic Devices Activated by Solar Light. Journal of Physical Chemistry C, 2008, 112, 2667-2670.	3.1	29

#	Article	IF	CITATIONS
55	Kinetics of 4-Methoxybenzyl Alcohol Oxidation in Aqueous Solution in a Fixed Bed Photocatalytic Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 6699-6708.	3.7	29
56	Enhancing selectivity in photocatalytic formation of p-anisaldehyde in aqueous suspension under solar light irradiation via TiO2 N-doping. New Journal of Chemistry, 2012, 36, 1762.	2.8	28
57	Visible-light driven oxidation of gaseous aliphatic alcohols to the corresponding carbonyls via TiO2 sensitized by a perylene derivative. Environmental Science and Pollution Research, 2014, 21, 11135-11141.	5.3	28
58	Highly stable defective TiO2-x with tuned exposed facets induced by fluorine: Impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation. Applied Surface Science, 2020, 510, 145419.	6.1	28
59	Citrate-stabilized gold nanoparticles hinder fibrillogenesis of a pathological variant of \hat{l}^2 < sub>2 < /sub>-microglobulin. Nanoscale, 2017, 9, 3941-3951.	5.6	26
60	Relating Photoelectrochemistry and Wettability of Sputtered Cu- and N-Doped TiO ₂ Thin Films via an Integrated Approach. Journal of Physical Chemistry C, 2018, 122, 12369-12376.	3.1	26
61	Overview and challenges of the photolytic and photocatalytic splitting of H2S. Catalysis Today, 2021, 380, 125-137.	4.4	26
62	N-TiO2/Cu-TiO2 double-layer films: Impact of stacking order on photocatalytic properties. Journal of Catalysis, 2017, 353, 116-122.	6.2	25
63	Influence of fluorine on the synthesis of anatase TiO ₂ for photocatalytic partial oxidation: are exposed facets the main actors?. Catalysis Science and Technology, 2018, 8, 1606-1620.	4.1	25
64	A review of recent and emerging antimicrobial nanomaterials in wastewater treatment applications. Chemosphere, 2021, 278, 130440.	8.2	22
65	ORMOSIL Thin Films:Â Tuning Mechanical Properties via a Nanochemistry Approach. Langmuir, 2006, 22, 11158-11162.	3.5	21
66	Nanoflower‣ike Bi ₂ WO ₆ Encapsulated in ORMOSIL as a Novel Photocatalytic Antifouling and Foulâ€Release Coating. Chemistry - A European Journal, 2016, 22, 7063-7067.	3.3	21
67	Determination of Photoadsorption Capacity of Polychrystalline TiO2 Catalyst in Irradiated Slurry. Advances in Chemical Engineering, 2009, 36, 1-35.	0.9	20
68	Photoelectrochemical activity of electrospun WO3/NiWO4 nanofibers under visible light irradiation. Journal of Materials Science, 2018, 53, 2208-2220.	3.7	20
69	Enhanced photoelectrochemical performance of atomic layer deposited Hf-doped ZnO. Surface and Coatings Technology, 2020, 385, 125352.	4.8	20
70	Three-dimensional CFD modelling of a photocatalytic parallel-channel microreactor. Chemical Engineering Science, 2021, 229, 116051 .	3.8	20
71	Validation of a two-dimensional modeling of an externally irradiated slurry photoreactor. Chemical Engineering Journal, 2015, 262, 490-498.	12.7	19
72	Modelling of a recirculating photocatalytic microreactor implementing mesoporous N-TiO2 modified with graphene. Chemical Engineering Journal, 2020, 391, 123574.	12.7	19

#	Article	IF	CITATIONS
73	Longâ€Lasting Nonâ€hydrogenated Dark Titanium Dioxide: Medium Vacuum Anneal for Enhanced Visible Activity of Modified Multiphase Photocatalysts. ChemCatChem, 2018, 10, 2949-2954.	3.7	17
74	Unveiling the role of bisulfide in the photocatalytic splitting of H2S in aqueous solutions. Applied Catalysis B: Environmental, 2020, 270, 118886.	20.2	17
75	Hydrogen production upon UV-light irradiation of Cu/TiO2 photocatalyst in the presence of alkanol-amines. International Journal of Hydrogen Energy, 2020, 45, 26701-26715.	7.1	16
76	Tuning the selectivity to aldehyde via pH regulation in the photocatalytic oxidation of 4-methoxybenzyl alcohol and vanillyl alcohol by TiO2 catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 105308.	6.7	16
77	Nanostructured anatase TiO2 densified at high pressure as advanced visible light photocatalysts. Photochemical and Photobiological Sciences, 2015, 14, 1685-1693.	2.9	15
78	Integrated Nano- and Macroscale Investigation of Photoinduced Hydrophilicity in TiO ₂ Thin Films. Langmuir, 2016, 32, 11813-11818.	3.5	15
79	Antifouling and Photocatalytic Antibacterial Activity of the AquaSun Coating in Seawater and Related Media. ACS Omega, 2017, 2, 7568-7575.	3.5	15
80	Sputtered vs. sol-gel TiO2-doped films: Characterization and assessment of aqueous bisphenol A oxidation under UV and visible light radiation. Catalysis Today, 2020, 357, 380-391.	4.4	15
81	Computational modeling of green hydrogen generation from photocatalytic H2S splitting: Overview and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100456.	11.6	15
82	Photoactivated Fe(III)/Fe(II)/WO3–Pd fuel cell for electricity generation using synthetic and real effluents under visible light. Renewable Energy, 2020, 147, 1070-1081.	8.9	14
83	Selective Photocatalytic Oxidation of 4-Methoxybenzyl Alcohol to p-Anisaldehyde in Organic-Free Water in a Continuous Annular Fixed Bed Reactor. International Journal of Chemical Reactor Engineering, 2007, 5, .	1.1	13
84	TiO2-Based Photocatalysis for Organic Synthesis. Nanostructure Science and Technology, 2010, , 623-645.	0.1	12
85	Heterogeneous Photocatalysis and Catalysis. , 2019, , 1-24.		12
86	NanoMORALs â€" Metal nanoparticles doped with organic molecules. Canadian Journal of Chemistry, 2009, 87, 673-677.	1.1	11
87	Growing N-doped multiphase TiO 2 nanocomposites on reduced graphene oxide: Characterization and activity under low energy visible radiation. Journal of Environmental Chemical Engineering, 2017, 5, 5091-5098.	6.7	11
88	Hydrogen and Propane Production From Butyric Acid Photoreforming Over Pt-TiO2. Frontiers in Chemistry, 2019, 7, 563.	3.6	11
89	Combined photocatalytic properties and energy efficiency via multifunctional glass. Journal of Environmental Chemical Engineering, 2019, 7, 102980.	6.7	11
90	N-Doped Anatase/Rutile Photocatalysts for the Synthesis of Aromatic Aldehydes Under Ultraviolet and Solar Irradiation. Science of Advanced Materials, 2015, 7, 2306-2319.	0.7	11

#	Article	IF	CITATIONS
91	A quantitative method of photoadsorption determination for irradiated catalyst in liquid–solid system. Catalysis Today, 2009, 143, 189-194.	4.4	10
92	Water microbial disinfection via supported nAg/Kaolin in a fixed-bed reactor configuration. Applied Clay Science, 2020, 184, 105387.	5.2	10
93	Highlights on Recent Developments of Heterogeneous and Homogeneous Photocatalysis. Molecules, 2021, 26, 23.	3.8	10
94	On form dictating function: shape and structural effects in silicaâ€based funtional materials. Chemical Record, 2010, 10, 17-28.	5.8	9
95	Unexpectedly ambivalent O2 role in the autocatalytic photooxidation of 2-methoxybenzyl alcohol in water. Journal of Molecular Catalysis A, 2015, 403, 37-42.	4.8	9
96	Differences between bulk and surface electronic structure of doped TiO2 with soft-elements (C, N and) Tj ETQq0	0 0 rgBT /	Oyerlock 10
97	Improved photocatalytic activity of SnO2-TiO2 nanocomposite thin films prepared by low-temperature sol-gel method. Catalysis Today, 2022, 397-399, 540-549.	4.4	9
98	On the selectivity of butyric acid photoreforming over Au/TiO2 and Pt/TiO2 by UV and visible radiation: A combined experimental and theoretical study. Applied Catalysis A: General, 2021, 624, 118321.	4.3	8
99	Structural insight on organosilica electrodes for waste-free alcohol oxidations. Catalysis Letters, 2007, 114, 55-58.	2.6	7
100	Two-Dimensional Modeling of an Externally Irradiated Slurry Photoreactor. International Journal of Chemical Reactor Engineering, 2013, 11, 675-685.	1.1	7
101	Photocatalytic activity of an electrophoretically deposited composite titanium dioxide membrane using carbon cloth as a conducting substrate. RSC Advances, 2016, 6, 64219-64227.	3.6	7
102	Influence of the Preparation Temperature on the Photocatalytic Activity of 3D-Ordered Macroporous Anatase Formed with an Opal Polymer Template. ACS Applied Nano Materials, 2018, 1, 2567-2578.	5.0	7
103	Alkaline treatment as a means to boost the activity of TiO2 in selective photocatalytic processes. Catalysis Science and Technology, 2020, 10, 5000-5012.	4.1	7
104	Selective photooxidation of ortho-substituted benzyl alcohols and the catalytic role of ortho-methoxybenzaldehyde. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 328, 122-128.	3.9	6
105	Reversible Metal Sulfide Transition in a Two-Step Thermochemical H ₂ S Splitting. Industrial & Sulfide Transition in a Two-Step Thermochemical H ₂ S Splitting.	3.7	6
106	Combining energy efficiency with self-cleaning properties in smart glass functionalized with multilayered semiconductors. Journal of Cleaner Production, 2020, 272, 122830.	9.3	5
107	Design of a Microfluidic Photocatalytic Reactor for Removal of Volatile Organic Components: Process Simulation and Techno-Economic Assessment. ACS Omega, 2022, 7, 8306-8313.	3.5	5
108	Towards the Broad Utilization of Gold Nanoparticles Entrapped in Organosilica. ChemCatChem, 2017, 9, 1322-1328.	3.7	4

#	Article	IF	CITATIONS
109	Technoâ€Economic Evaluation of Photocatalytic H ₂ S Splitting. Energy Technology, 2021, 9, 2100163.	3.8	4
110	Technoâ€Economic Evaluation of Photocatalytic H ₂ S Splitting. Energy Technology, 2021, 9, 2170082.	3.8	3
111	Enhanced Mechanical Properties in Organofluorosilica Thin Films. Journal of Nanomaterials, 2008, 2008, 1-5.	2.7	2
112	Photocatalytic activity of neat and polymer-modified bitumen. Applied Materials Today, 2020, 21, 100795.	4.3	2
113	Editorial: Selective Photocatalysis for Organic Chemistry. Current Organic Chemistry, 2013, 17, 2365-2365.	1.6	1
114	Topologically non-trivial metal-organic assemblies inhibit \hat{l}^2 2-microglobulin amyloidogenesis. Cell Reports Physical Science, 2021, 2, 100477.	5.6	1
115	Photocatalytic Degradation of 2-propanol Over TiO2-based Thin Films in a Simulated Pilot Microreactor. Journal of Photocatalysis, 2021, 2, 97-104.	0.4	1
116	Selective photocatalytic oxidation of 3-pyridinemethanol on platinized acid/base modified TiO2. Catalysis Science and Technology, 2021, 11, 4549-4559.	4.1	1
117	Green heterogeneous catalysis. , 2022, , 193-242.		1
118	Erratum to Two-Dimensional Modeling of an Externally Irradiated Slurry Photoreactor. International Journal of Chemical Reactor Engineering, 2014, 12, 665-665.	1.1	0
119	Graphene-based hybrid photocatalysts: a promising route toward high-efficiency photocatalytic water remediation., 2020,, 325-359.		O
120	Characterization techniques., 2022,, 243-314.		O
121	Adsorption models, surface reaction, and catalyst architectures. , 2022, , 63-99.		O
122	Design of Metal–Dielectric Multilayer Coatings for Energyâ€Efficient Building Glazing. Energy Technology, 0, , 2100776.	3.8	0