Dapeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2316878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ophiopogonin D Inhibiting Epithelial NF-κB Signaling Pathway Protects Against Experimental Colitis in Mice. Inflammation, 2022, 45, 1720-1731.	3.8	5
2	Advancements of compounds targeting Wnt and Notch signalling pathways in the treatment of inflammatory bowel disease and colon cancer. Journal of Drug Targeting, 2021, 29, 507-519.	4.4	16
3	Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflammation Research, 2021, 70, 753-764.	4.0	31
4	Naringin Exerts Therapeutic Effects on Mice Colitis: A Study Based on Transcriptomics Combined With Functional Experiments. Frontiers in Pharmacology, 2021, 12, 729414.	3.5	11
5	Puerarin Ameliorates 5-Fluorouracil–Induced Intestinal Mucositis in Mice by Inhibiting JAKs. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 147-155.	2.5	7
6	Arbutin Ameliorates Murine Colitis by Inhibiting JAK2 Signaling Pathway. Frontiers in Pharmacology, 2021, 12, 683818.	3.5	8
7	Soluble ligands as drug targets for treatment of inflammatory bowel disease. , 2021, 226, 107859.		10
8	<i>In vitro</i> and <i>inÂvivo</i> evaluation of self-assembled chitosan nanoparticles selectively overcoming hepatocellular carcinoma via asialoglycoprotein receptor. Drug Delivery, 2021, 28, 2071-2084.	5.7	15
9	Phytochemical Regulation of RNA in Treating Inflammatory Bowel Disease and Colon Cancer: Inspirations from Cell and Animal Studies. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 464-472.	2.5	2
10	Intestinal Inflammation and Parkinsonâ \in Ms Disease. , 2021, 12, 2052.		23
11	Protective Effects of Cinnamaldehyde against Mesenteric Ischemia-Reperfusion-Induced Lung and Liver Injuries in Rats. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	4.0	8
12	Dual role of Ca2+-activated Clâ^' channel transmembrane member 16A in lipopolysaccharide-induced intestinal epithelial barrier dysfunction in vitro. Cell Death and Disease, 2020, 11, 404.	6.3	11
13	Ginsenoside protects against AKI via activation of HIF‴1α and VEGFâ€ʿA in the kidneyâ€ʿbrain axis. International Journal of Molecular Medicine, 2020, 45, 939-946.	4.0	6
14	Exosome-Induced Regulation in Inflammatory Bowel Disease. Frontiers in Immunology, 2019, 10, 1464.	4.8	96
15	Enhancement of epithelial cell autophagy induced by sinensetin alleviates epithelial barrier dysfunction in colitis. Pharmacological Research, 2019, 148, 104461.	7.1	33
16	Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy. Pharmacological Research, 2019, 146, 104308.	7.1	78
17	Saponins regulate intestinal inflammation in colon cancer and IBD. Pharmacological Research, 2019, 144, 66-72.	7.1	68
18	Role of p-MKK7 in myricetin-induced protection against intestinal ischemia/reperfusion injury. Pharmacological Research, 2018, 129, 432-442.	7.1	31

DAPENG CHEN

#	Article	IF	CITATIONS
19	Fortunellin-Induced Modulation of Phosphatase and Tensin Homolog by MicroRNA-374a Decreases Inflammation and Maintains Intestinal Barrier Function in Colitis. Frontiers in Immunology, 2018, 9, 83.	4.8	14
20	6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling. Pharmacological Research, 2017, 119, 137-148.	7.1	112
21	Fruit bromelain ameliorates rat constipation induced by loperamide. RSC Advances, 2017, 7, 45252-45259.	3.6	4
22	p-JAK2 plays a key role in catalpol-induced protection against rat intestinal ischemia/reperfusion injury. RSC Advances, 2017, 7, 54369-54378.	3.6	7
23	Activation of sirtuin 1 by catalpol-induced down-regulation of microRNA-132 attenuates endoplasmic reticulum stress in colitis. Pharmacological Research, 2017, 123, 73-82.	7.1	41
24	Myosin Light Chain Kinase: A Potential Target for Treatment of Inflammatory Diseases. Frontiers in Pharmacology, 2017, 8, 292.	3.5	49
25	Ameliorative effects of atractylodin on intestinal inflammation and co-occurring dysmotility in both constipation and diarrhea prominent rats. Korean Journal of Physiology and Pharmacology, 2017, 21, 1.	1.2	35
26	Inhibition of Epithelial TNF-α Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis. Frontiers in Immunology, 2017, 8, 1468.	4.8	17
27	Salvianolic Acid B Restored Impaired Barrier Function via Downregulation of MLCK by microRNA-1 in Rat Colitis Model. Frontiers in Pharmacology, 2016, 7, 134.	3.5	30
28	Madagascine Induces Vasodilatation via Activation of AMPK. Frontiers in Pharmacology, 2016, 7, 435.	3.5	10
29	Capsaicin alleviates abnormal intestinal motility through regulation of enteric motor neurons and MLCK activity: Relevance to intestinal motility disorders. Molecular Nutrition and Food Research, 2015, 59, 1482-1490.	3.3	15
30	Citrus nobiletin ameliorates experimental colitis by reducing inflammation and restoring impaired intestinal barrier function. Molecular Nutrition and Food Research, 2015, 59, 829-842.	3.3	73
31	Effects of ginsenosides on rat jejunal contractility. Pharmaceutical Biology, 2014, 52, 162-168.	2.9	9
32	Dual Role of MAPK Pathway in the Regulation of Intestinal Barrier Function. Inflammatory Bowel Diseases, 2014, 20, E16.	1.9	2
33	Epithelial MLCK and Smooth Muscle MLCK May Play Different Roles in the Development of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2014, 59, 1068-1069.	2.3	5
34	Effects of ginsenoside Re on rat jejunal contractility. Journal of Natural Medicines, 2014, 68, 530-538.	2.3	8
35	Cardiac Clycosides and Anticancer Activity. , 2013, , 3743-3755.		1
36	Characteristics of emodin on modulating the contractility of jejunal smooth muscle. Canadian Journal of Physiology and Pharmacology, 2012, 90, 455-462.	1.4	25

#	Article	IF	CITATIONS
37	Inhibitory effects of daidzein on intestinal motility in normal and high contractile states. Pharmaceutical Biology, 2012, 50, 1561-1566.	2.9	5