
Vincent Rioux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2316407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linoleic acid: Between doubts and certainties. Biochimie, 2014, 96, 14-21.	1.3	138
2	The n-3 docosapentaenoic acid (DPA): A new player in the n-3 long chain polyunsaturated fatty acid family. Biochimie, 2019, 159, 36-48.	1.3	106
3	The same rat Δ6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis. Biochemical Journal, 2002, 364, 49-55.	1.7	104
4	May omega-3 fatty acid dietary supplementation help reduce severe complications in Covid-19 patients?. Biochimie, 2020, 179, 275-280.	1.3	93
5	The Complex and Important Cellular and Metabolic Functions of Saturated Fatty Acids. Lipids, 2010, 45, 941-946.	0.7	90
6	Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and C20:3 n-6 in the rat. Reproduction, Nutrition, Development, 2005, 45, 599-612.	1.9	67
7	Saturated fatty acids: simple molecular structures with complex cellular functions. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 752-758.	1.3	62
8	Myristic acid, unlike palmitic acid, is rapidly metabolized in cultured rat hepatocytes. Journal of Nutritional Biochemistry, 2000, 11, 198-207.	1.9	58
9	Myristic acid increases Δ6-desaturase activity in cultured rat hepatocytes. Reproduction, Nutrition, Development, 2004, 44, 131-140.	1.9	55
10	Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation. Biochimie, 2016, 120, 40-48.	1.3	52
11	Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat î"6-desaturase activity. Journal of Lipid Research, 2004, 45, 32-40.	2.0	47
12	Myristic acid increases the activity of dihydroceramide Δ4-desaturase 1 through its N-terminal myristoylation. Biochimie, 2007, 89, 1553-1561.	1.3	46
13	Regulation of mammalian desaturases by myristic acid: N-terminal myristoylation and other modulations. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 1-8.	1.2	46
14	Comparative effects of well-balanced diets enriched in α-linolenic or linoleic acids on LC-PUFA metabolism in rat tissues. Prostaglandins Leukotrienes and Essential Fatty Acids, 2013, 88, 383-389.	1.0	46
15	Membrane remodeling, an early event in benzo[α]pyrene-induced apoptosis. Toxicology and Applied Pharmacology, 2010, 243, 68-76.	1.3	44
16	The fatty acid desaturase 3 gene encodes for different FADS3 protein isoforms in mammalian tissues. Journal of Lipid Research, 2010, 51, 472-479.	2.0	40
17	Comparative effect of fenofibrate on hepatic desaturases in wild-type and peroxisome proliferator-activated receptor α-deficient mice. Lipids, 2002, 37, 981-989.	0.7	37
18	Comparative effects of dietary n-3 docosapentaenoic acid (DPA), DHA and EPA on plasma lipid parameters, oxidative status and fatty acid tissue composition. Journal of Nutritional Biochemistry, 2019, 63, 186-196.	1.9	37

VINCENT RIOUX

#	Article	IF	CITATIONS
19	N-Myristoylation targets dihydroceramide î"4-desaturase 1 to mitochondria: Partial involvement in the apoptotic effect of myristic acid. Biochimie, 2009, 91, 1411-1419.	1.3	35
20	Trans-vaccenate is Δ13-desaturated by FADS3 in rodents. Journal of Lipid Research, 2013, 54, 3438-3452.	2.0	35
21	In rat hepatocytes, myristic acid occurs through lipogenesis, palmitic acid shortening and lauric acid elongation. Animal, 2007, 1, 820-826.	1.3	33
22	Short Chain Saturated Fatty Acids Decrease Circulating Cholesterol and Increase Tissue PUFA Content in the Rat. Lipids, 2010, 45, 975-986.	0.7	32
23	High performance liquid chromatography of fatty acids as naphthacyl derivatives. Analusis - European Journal of Analytical Chemistry, 1999, 27, 186-193.	0.4	31
24	Conversion of hexadecanoic acid to hexadecenoic acid by rat Δ6-desaturase. Journal of Lipid Research, 2003, 44, 450-454.	2.0	30
25	Exogenous myristic acid acylates proteins in cultured rat hepatocytes. Journal of Nutritional Biochemistry, 2002, 13, 66-74.	1.9	27
26	Specific roles of saturated fatty acids: Beyond epidemiological data. European Journal of Lipid Science and Technology, 2015, 117, 1489-1499.	1.0	27
27	Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation. Reproduction, Nutrition, Development, 2003, 43, 419-430.	1.9	26
28	Substitution of dietary oleic acid for myristic acid increases the tissue storage of α-linolenic acid and the concentration of docosahexaenoic acid in the brain, red blood cells and plasma in the rat. Animal, 2008, 2, 636-644.	1.3	25
29	Identification and characterization of recombinant and native rat myristoyl-CoA: protein N-myristoyltransferases. Molecular and Cellular Biochemistry, 2006, 286, 161-170.	1.4	24
30	Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat. PLoS ONE, 2015, 10, e0133600.	1.1	23
31	Divergent and common groups of proteins in glands of venomous snakes. Electrophoresis, 1998, 19, 788-796.	1.3	21
32	Lauric acid is desaturated to 12â^¶1nâ^'3 by hepatocytes and rat liver homogenates. Lipids, 2002, 37, 569-572.	0.7	20
33	Mechanisms involved in lipid accumulation and apoptosis induced by 1-nitropyrene in Hepa1c1c7 cells. Toxicology Letters, 2011, 206, 289-299.	0.4	20
34	Synthesis of the suspected trans-11,cis-13 conjugated linoleic acid isomer in ruminant mammary tissue by FADS3-catalyzed l"13-desaturation of vaccenic acid. Journal of Dairy Science, 2017, 100, 783-796.	1.4	20
35	The surprising diversity of î"6-desaturase substrates. Biochemical Society Transactions, 2004, 32, 86-87.	1.6	19
36	Protective action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane remodeling-dependent NHE1 pathway. Chemico-Biological Interactions, 2014, 207, 41-51.	1.7	19

VINCENT RIOUX

#	Article	IF	CITATIONS
37	Dietary caprylic acid and ghrelin O-acyltransferase activity to modulate octanoylated ghrelin functions: What is new in this nutritional field?. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 135, 121-127.	1.0	19
38	Effect of preduodenal lipase inhibition in suckling rats on dietary octanoic acid (C8:0) gastric absorption and plasma octanoylated ghrelin concentration. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1111-1120.	1.2	16
39	Current intakes of trans-palmitoleic (trans-C16:1 n-7) and trans-vaccenic (trans-C18:1 n-7) acids in France are exclusively ensured by ruminant milk and ruminant meat: A market basket investigation. Food Chemistry: X, 2020, 5, 100081.	1.8	16
40	Retroconversion of dietary trans-vaccenic (trans-C18:1 n-7) acid to trans-palmitoleic acid (trans-C16:1) Tj ETQqO of Nutritional Biochemistry, 2019, 63, 19-26.	0 0 rgBT / 1.9	Overlock 10 15
41	Myristic Acid Increases Dihydroceramide Δ4â€Đesaturase 1 (DES1) Activity in Cultured Rat Hepatocytes. Lipids, 2012, 47, 117-128.	0.7	13
42	Beneficial impact of a mix of dairy fat with rapeseed oil on n-6 and n-3 PUFA metabolism in the rat: A small enrichment in dietary alpha-linolenic acid greatly increases its conversion to DHA in the liver. European Journal of Lipid Science and Technology, 2015, 117, 281-290.	1.0	12
43	Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D304.	0.6	12
44	Conversion of dietary trans-vaccenic acid to trans11,cis13-conjugated linoleic acid in the rat lactating mammary gland by Fatty Acid Desaturase 3-catalyzed methyl-end l"13-desaturation. Biochemical and Biophysical Research Communications, 2018, 505, 385-391.	1.0	12
45	Incorporation of Dairy Lipids in the Diet Increased Long-Chain Omega-3 Fatty Acids Status in Post-weaning Rats. Frontiers in Nutrition, 2018, 5, 42.	1.6	12
46	Trans-palmitoleic acid (trans-9-C16:1, or trans-C16:1 n-7): Nutritional impacts, metabolism, origin, compositional data, analytical methods and chemical synthesis. A review. Biochimie, 2020, 169, 144-160.	1.3	12
47	Convergence of amino acid compositions of certain groups of proteins aids in their identification on two-dimensional electrophoresis gels. Electrophoresis, 1997, 18, 443-451.	1.3	10
48	Impact of n-3 Docosapentaenoic Acid Supplementation on Fatty Acid Composition in Rat Differs Depending upon Tissues and Is Influenced by the Presence of Dairy Lipids in the Diet. Journal of Agricultural and Food Chemistry, 2018, 66, 9976-9988.	2.4	10
49	Moderate chronic ethanol consumption exerts beneficial effects on nonalcoholic fatty liver in mice fed a high-fat diet: possible role of higher formation of triglycerides enriched in monounsaturated fatty acids. European Journal of Nutrition, 2020, 59, 1619-1632.	1.8	10
50	Métabolisme et fonctions de l'acide myristique. Oleagineux Corps Gras Lipides, 2001, 8, 161-166.	0.2	9
51	Benefits of natural dietary <i>trans</i> fatty acids towards inflammation, obesity and type 2 diabetes: defining the n-7 <i>trans</i> fatty acid family. OCL - Oilseeds and Fats, Crops and Lipids, 2019, 26, 46.	0.6	9
52	Influence of the cis-9, cis-12 and cis-15 double bond position in octadecenoic acid (18:1) isomers on the rat FADS2-catalyzed 1"6-desaturation. Chemistry and Physics of Lipids, 2015, 187, 10-19.	1.5	8
53	Fatty Acid Desaturase 3 (FADS3) Is a Specific â^†13-Desaturase of Ruminant <i>trans</i> -Vaccenic Acid. Lifestyle Genomics, 2019, 12, 18-24.	0.6	3
54	Special issue "Bioactive Lipids, Nutrition and Health― Biochimie, 2011, 93, v-vi.	1.3	2

VINCENT RIOUX

#	Article	IF	CITATIONS
55	Special section involvement of lipids in the occurrence of COVID-19. Biochimie, 2020, 179, 228.	1.3	2
56	In rat hepatocytes, myristic acid occurs through lipogenesis, palmitic acid shortening and lauric acid elongation. Chemistry and Physics of Lipids, 2007, 149, S69-S70.	1.5	1
57	Chemical Synthesis and Isolation ofTransâ€Palmitoleic Acid (Trans 16:1 nâ€7) Suitable for Nutritional Studies. European Journal of Lipid Science and Technology, 2020, 122, 1900409.	1.0	1
58	Myristic acid increases dihydroceramide î"4-desaturase activity: Involvement of N-terminal myristoylation. Chemistry and Physics of Lipids, 2007, 149, S19.	1.5	0
59	Acides gras saturés et acylation des protéinesÂ: des aspects fonctionnels à l'approche nutritionnelle. Cahiers De Nutrition Et De Dietetique, 2016, 51, 296-303.	0.2	0
60	Nutritional Significance of Milk Lipids: From Bioactive Fatty Acids to Supramolecular Structures Impacting Metabolism. , 2020, , 307-344.		0