
Marvin J Meyers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/231632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estrogen Receptor-β Potency-Selective Ligands:  Structureâ^'Activity Relationship Studies of Diarylpropionitriles and Their Acetylene and Polar Analogues. Journal of Medicinal Chemistry, 2001, 44, 4230-4251.	6.4	648
2	Novel Ligands that Function as Selective Estrogens or Antiestrogens for Estrogen Receptor-α or Estrogen Receptor-β*. Endocrinology, 1999, 140, 800-804.	2.8	305
3	Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nature Structural Biology, 2002, 9, 359-64.	9.7	188
4	Pyrrolopyridine Inhibitors of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MK-2). Journal of Medicinal Chemistry, 2007, 50, 2647-2654.	6.4	155
5	Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science, 2017, 358, 518-522.	12.6	152
6	Estrogen Receptor Subtype-Selective Ligands:  Asymmetric Synthesis and Biological Evaluation of cis- and trans-5,11-Dialkyl- 5,6,11,12-tetrahydrochrysenes. Journal of Medicinal Chemistry, 1999, 42, 2456-2468.	6.4	150
7	Novel tetrahydro-β-carboline-1-carboxylic acids as inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4657-4663.	2.2	128
8	A Benzothiophene Inhibitor of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Inhibits Tumor Necrosis Factor α Production and Has Oral Anti-Inflammatory Efficacy in Acute and Chronic Models of Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 797-807.	2.5	113
9	Novel Ligands that Function as Selective Estrogens or Antiestrogens for Estrogen Receptor-Â or Estrogen Receptor-Â. Endocrinology, 1999, 140, 800-804.	2.8	107
10	The Hepatitis B Virus Ribonuclease H Is Sensitive to Inhibitors of the Human Immunodeficiency Virus Ribonuclease H and Integrase Enzymes. PLoS Pathogens, 2013, 9, e1003125.	4.7	96
11	Discovery of (3 <i>S</i> ,3a <i>R</i>)-2-(3-Chloro-4-cyanophenyl)-3-cyclopentyl-3,3a,4,5-tetrahydro-2 <i>H</i> -benzo[<i>g</i>] Acid (PF-3882845), an Orally Efficacious Mineralocorticoid Receptor (MR) Antagonist for Hypertension and Nephropathy. Journal of Medicinal Chemistry, 2010, 53, 5979-6002.	indazole-7 6.4	′-carboxylic
12	Hydroxylated Tropolones Inhibit Hepatitis B Virus Replication by Blocking Viral Ribonuclease H Activity. Antimicrobial Agents and Chemotherapy, 2015, 59, 1070-1079.	3.2	81
13	Hepatitis B virus replication is blocked by a 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) inhibitor of the viral ribonuclease H activity. Antiviral Research, 2014, 108, 48-55.	4.1	63
14	Clinically Advanced p38 Inhibitors Suppress DUX4 Expression in Cellular and Animal Models of Facioscapulohumeral Muscular Dystrophy. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 219-230.	2.5	58
15	Recent Advances in Plasmepsin Medicinal Chemistry and Implications for Future Antimalarial Drug Discovery Efforts. Current Topics in Medicinal Chemistry, 2012, 12, 445-455.	2.1	55
16	Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4882-4884.	2.2	42
17	Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorganic and Medicinal Chemistry, 2016, 24, 3527-3539.	3.0	42
18	Synthesis and Antimalarial Bioassay of Quinine – Peptide Conjugates. Chemical Biology and Drug Design, 2013, 82, 361-366.	3.2	40

MARVIN J MEYERS

#	Article	IF	CITATIONS
19	Benzothiophene inhibitors of MK2. Part 1: Structure–activity relationships, assessments of selectivity and cellular potency. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4878-4881.	2.2	37
20	Evaluation of Aminohydantoins as a Novel Class of Antimalarial Agents. ACS Medicinal Chemistry Letters, 2014, 5, 89-93.	2.8	34
21	Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1543-1547.	2.2	32
22	Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. Journal of Clinical Investigation, 2019, 129, 2745-2759.	8.2	32
23	Troponoids Can Inhibit Growth of the Human Fungal Pathogen Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	31
24	Characterization of the C-Terminal Nuclease Domain of Herpes Simplex Virus pUL15 as a Target of Nucleotidyltransferase Inhibitors. Biochemistry, 2016, 55, 809-819.	2.5	30
25	Clinical and microbiologic efficacy of the piperazine-based drug lead MMV665917 in the dairy calf cryptosporidiosis model. PLoS Neglected Tropical Diseases, 2018, 12, e0006183.	3.0	29
26	Discovery of novel spirocyclic inhibitors of fatty acid amide hydrolase (FAAH). Part 2. Discovery of 7-azaspiro[3.5]nonane urea PF-04862853, an orally efficacious inhibitor of fatty acid amide hydrolase (FAAH) for pain. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6545-6553.	2.2	28
27	Rev-Erb co-regulates muscle regeneration via tethered interaction with the NF-Y cistrome. Molecular Metabolism, 2017, 6, 703-714.	6.5	27
28	MEPicides: α,β-Unsaturated Fosmidomycin Analogues as DXR Inhibitors against Malaria. Journal of Medicinal Chemistry, 2018, 61, 8847-8858.	6.4	26
29	Discovery of 3-Cyano- <i>N</i> -(3-(1-isobutyry piperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyrid A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C2 Inverse Agonist, Journal of Medicinal Chemistry, 2018, 61, 10415-10439.	in-5-yl)ber	ızamide:
30	Chemical Approaches to Inhibiting the Hepatitis B Virus Ribonuclease H. ACS Infectious Diseases, 2019, 5, 655-658.	3.8	26
31	Synthesis of <i>tert</i> -Butyl 6-Oxo-2-azaspiro[3.3]heptane-2-carboxylate. Organic Letters, 2009, 11, 3523-3525.	4.6	24
32	Quinine bis-conjugates with quinolone antibiotics and peptides: synthesis and antimalarial bioassay. Organic and Biomolecular Chemistry, 2012, 10, 8985.	2.8	24
33	The therapeutic efficacy of azithromycin and nitazoxanide in the acute pig model of Cryptosporidium hominis. PLoS ONE, 2017, 12, e0185906.	2.5	24
34	Antifungal Phenothiazines: Optimization, Characterization of Mechanism, and Modulation of Neuroreceptor Activity. ACS Infectious Diseases, 2018, 4, 499-507.	3.8	24
35	Discovery of novel spirocyclic inhibitors of fatty acid amide hydrolase (FAAH). Part 1: Identification of 7-azaspiro[3.5]nonane and 1-oxa-8-azaspiro[4.5]decane as lead scaffolds. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6538-6544.	2.2	22
36	Identification of (<i>R</i>)-6-(1-(4-Cyano-3-methylphenyl)-5-cyclopentyl-4,5-dihydro-1 <i>H</i> -pyrazol-3-yl)-2-methoxynicotinic Acid, a Highly Potent and Selective Nonsteroidal Mineralocorticoid Receptor Antagonist. Journal of Medicinal Chemistry, 2014, 57, 4273-4288.	6.4	22

MARVIN J MEYERS

#	Article	IF	CITATIONS
37	Synthesis and Evaluation of Troponoids as a New Class of Antibiotics. ACS Omega, 2018, 3, 15125-15133.	3.5	22
38	Evaluation of spiropiperidine hydantoins as a novel class of antimalarial agents. Bioorganic and Medicinal Chemistry, 2015, 23, 5144-5150.	3.0	21
39	Endonuclease Activity Inhibition of the NS1 Protein of Parvovirus B19 as a Novel Target for Antiviral Drug Development. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	21
40	Identification of 4-Amino-Thieno[2,3- <i>d</i>]Pyrimidines as QcrB Inhibitors in Mycobacterium tuberculosis. MSphere, 2019, 4, .	2.9	19
41	Non-steroidal mineralocorticoid receptor antagonists. Expert Opinion on Therapeutic Patents, 2007, 17, 17-23.	5.0	16
42	Hepatitis B virus genetic diversity has minimal impact on sensitivity ofÂthe viral ribonuclease H to inhibitors. Antiviral Research, 2016, 135, 24-30.	4.1	13
43	4-Aryl Pyrrolidines as a Novel Class of Orally Efficacious Antimalarial Agents. Part 1: Evaluation of 4-Aryl-N-benzylpyrrolidine-3-carboxamides. Journal of Medicinal Chemistry, 2019, 62, 3503-3512.	6.4	13
44	Repurposing and optimization of drugs for discovery of novel antifungals. Drug Discovery Today, 2022, 27, 2008-2014.	6.4	12
45	Efficient Inhibition of Hepatitis B Virus (HBV) Replication and cccDNA Formation by HBV Ribonuclease H Inhibitors during Infection. Antimicrobial Agents and Chemotherapy, 2021, 65, e0146021.	3.2	11
46	Optimization of the Urea Linker of Triazolopyridazine MMV665917 Results in a New Anticryptosporidial Lead with Improved Potency and Predicted hERG Safety Margin. Journal of Medicinal Chemistry, 2021, 64, 11729-11745.	6.4	10
47	Synthetic Derivatives of Ciclopirox are Effective Inhibitors of <i>Cryptococcus neoformans</i> . ACS Omega, 2021, 6, 8477-8487.	3.5	9
48	Facile synthesis of high affinity styrylpyridine systems as inherently fluorescent ligands for the estrogen receptor. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3589-3594.	2.2	8
49	Pharmacologic Comparison of Clinical Neutral Endopeptidase Inhibitors in a Rat Model of Acute Secretory Diarrhea. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 423-431.	2.5	7
50	Synthetic derivatives of the antifungal drug ciclopirox are active against herpes simplex virus 2. European Journal of Medicinal Chemistry, 2022, 238, 114443.	5.5	6
51	4-Aryl Pyrrolidines as Novel Orally Efficacious Antimalarial Agents. Part 2: 2-Aryl- <i>N</i> -(4-arylpyrrolidin-3-yl)acetamides. ACS Medicinal Chemistry Letters, 2019, 10, 966-971.	2.8	5
52	Mechanism of Action of N-Acyl and N-Alkoxy Fosmidomycin Analogs: Mono- and Bisubstrate Inhibition of IspC from Plasmodium falciparum, a Causative Agent of Malaria. ACS Omega, 2021, 6, 27630-27639.	3.5	3
53	Editorial [Hot Topic :The Medicinal Chemistry of Novel Approaches for the Treatment of Malaria (Guest Editor: Marvin J. Meyers)]. Current Topics in Medicinal Chemistry, 2012, 12, 371-372.	2.1	1