Mirko Castellini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2316164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil and Tillage Research, 2015, 154, 1-13.	5.6	160
2	Using Static and Dynamic Indicators to Evaluate Soil Physical Quality in a Sicilian Area. Land Degradation and Development, 2016, 27, 200-210.	3.9	52
3	Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water (Switzerland), 2019, 11, 484.	2.7	52
4	Water footprint of winter wheat under climate change: Trends and uncertainties associated to the ensemble of crop models. Science of the Total Environment, 2019, 658, 1186-1208.	8.0	52
5	Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in Southern Italy. Soil and Tillage Research, 2012, 124, 47-56.	5.6	50
6	Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 2014, 213, 492-501.	5.1	46
7	Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy. European Journal of Agronomy, 2016, 77, 188-198.	4.1	39
8	INFLUENCE OF THE PRESSURE HEAD SEQUENCE ON THE SOIL HYDRAULIC CONDUCTIVITY DETERMINED WITH TENSION INFILTROMETER. Applied Engineering in Agriculture, 2005, 21, 383-391.	0.7	38
9	Cover Crop for a Sustainable Viticulture: Effects on Soil Properties and Table Grape Production. Agronomy, 2020, 10, 1334.	3.0	38
10	An assessment of the BEST procedure to estimate the soil water retention curve: A comparison with the evaporation method. Geoderma, 2018, 320, 82-94.	5.1	35
11	Simulating the hydrological response of a closed catchment-lake system to recent climate and land-use changes in semi-arid Mediterranean environment. Journal of Hydrology, 2014, 517, 732-745.	5.4	32
12	Use of BEST Procedure to Assess Soil Physical Quality in the Baratz Lake Catchment (Sardinia, Italy). Soil Science Society of America Journal, 2016, 80, 742-755.	2.2	32
13	A comparison between the single ring pressure infiltrometer and simplified falling head techniques. Hydrological Processes, 2014, 28, 4843-4853.	2.6	31
14	Experimental assessment of a new comprehensive model for single ring infiltration data. Journal of Hydrology, 2019, 573, 937-951.	5.4	29
15	Pedotransfer functions for estimating soil water retention curve of Sicilian soils. Archives of Agronomy and Soil Science, 2019, 65, 1401-1416.	2.6	28
16	Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions. Journal of Hydrology, 2020, 589, 125159.	5.4	26
17	Spatial Variability of Soil Physical and Hydraulic Properties in a Durum Wheat Field: An Assessment by the BEST-Procedure. Water (Switzerland), 2019, 11, 1434.	2.7	25
18	Application of Multivariate Analysis Techniques for Selecting Soil Physical Quality Indicators: A Case Study in Longâ€Term Field Experiments in Apulia (Southern Italy). Soil Science Society of America Journal, 2019, 83, 707-720.	2.2	25

MIRKO CASTELLINI

#	Article	IF	CITATIONS
19	Temporal changes of soil physical quality under two residue management systems. Soil Use and Management, 2014, 30, 423-434.	4.9	24
20	Comparison of unconfined and confined unsaturated hydraulic conductivity. Geoderma, 2007, 137, 394-400.	5.1	23
21	Comparing physical quality of tilled and no-tilled soils in an almond orchard in southern Italy. Italian Journal of Agronomy, 2013, 8, 20.	1.0	20
22	Detecting infiltrated water and preferential flow pathways through time-lapse ground-penetrating radar surveys. Science of the Total Environment, 2020, 726, 138511.	8.0	19
23	Recovery of Soil Hydraulic Properties for Assisted Passive and Active Restoration: Assessing Historical Land Use and Forest Structure. Water (Switzerland), 2019, 11, 86.	2.7	18
24	Testing the concentric-disk tension infiltrometer for field measurement of soil hydraulic conductivity. Geoderma, 2010, 158, 427-435.	5.1	17
25	Application of EMI and FDR Sensors to Assess the Fraction of Transpirable Soil Water over an Olive Grove. Water (Switzerland), 2018, 10, 168.	2.7	17
26	Comparing the Hydraulic Properties of Forested and Grassed Soils on an Experimental Hillslope in a Mediterranean Environment. Procedia Environmental Sciences, 2013, 19, 341-350.	1.4	16
27	Testing a Simplified Approach to Determine Field Saturated Soil Hydraulic Conductivity. Procedia Environmental Sciences, 2013, 19, 599-608.	1.4	16
28	Effects of maquis clearing on the properties of the soil and on the near-surface hydrological processes in a semi-arid Mediterranean environment. Journal of Agricultural Engineering, 2014, 45, 176.	1.5	16
29	Assessing Water Infiltration and Soil Water Repellency in Brazilian Atlantic Forest Soils. Applied Sciences (Switzerland), 2020, 10, 1950.	2.5	16
30	Key gaps in soil monitoring during forest restoration in Colombia. Restoration Ecology, 2021, 29, e13391.	2.9	16
31	Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: yield analysis and soil fertility. Italian Journal of Agronomy, 2012, 7, 15.	1.0	15
32	Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern of Italy: optimum sowing and transplanting time for winter durum wheat and tomato. Italian Journal of Agronomy, 2012, 7, 16.	1.0	14
33	Assessment of the Physically-Based Hydrus-1D Model for Simulating the Water Fluxes of a Mediterranean Cropping System. Water (Switzerland), 2019, 11, 1657.	2.7	14
34	Rapid and accurate measurement methods for determining soil hydraulic properties: A review. Journal of Hydrology and Hydromechanics, 2021, 69, 121-139.	2.0	14
35	Estimating the Soil Hydraulic Functions of Some Olive Orchards: Soil Management Implications for Water Saving in Soils of Salento Peninsula (Southern Italy). Agronomy, 2020, 10, 177.	3.0	12
36	Assessment of Soil Quality under Different Soil Management Strategies: Combined Use of Statistical Approaches to Select the Most Informative Soil Physico-Chemical Indicators. Applied Sciences (Switzerland), 2021, 11, 5099.	2.5	12

MIRKO CASTELLINI

#	Article	IF	CITATIONS
37	Determining Soil Hydraulic Properties Using Infiltrometer Techniques: An Assessment of Temporal Variability in a Long-Term Experiment under Minimum- and No-Tillage Soil Management. Sustainability, 2020, 12, 5019.	3.2	11
38	Compost Amendment Impact on Soil Physical Quality Estimated from Hysteretic Water Retention Curve. Water (Switzerland), 2022, 14, 1002.	2.7	11
39	Subsurface flow and large-scale lateral saturated soil hydraulic conductivity in a Mediterranean hillslope with contrasting land uses. Journal of Hydrology and Hydromechanics, 2017, 65, 297-306.	2.0	9
40	Intercropping and rotation with leguminous plants in organic vegetables: crop performance, soil properties and sustainability assessment. Biological Agriculture and Horticulture, 2021, 37, 141-167.	1.0	8
41	Prediction of Soil Organic Carbon at Field Scale by Regression Kriging and Multivariate Adaptive Regression Splines Using Geophysical Covariates. Land, 2022, 11, 381.	2.9	7
42	Improved Beerkan run methodology to assess water impact effects on infiltration and hydraulic properties of a loam soil under conventional―and noâ€ŧillage. Soil Science Society of America Journal, 2021, 85, 235-248.	2.2	6
43	A plot-scale uncertainty analysis of saturated hydraulic conductivity of a clay soil. Journal of Hydrology, 2021, 596, 125694.	5.4	6
44	The Mechanical Impact of Water Affected the Soil Physical Quality of a Loam Soil under Minimum Tillage and No-Tillage: An Assessment Using Beerkan Multi-Height Runs and BEST-Procedure. Land, 2021, 10, 195.	2.9	6
45	Comparison of Two Methods for Total Inorganic Carbon Estimation in Three Soil Types in Mediterranean Area. Land, 2021, 10, 409.	2.9	6
46	Open Questions and Research Needs in the Adoption of Conservation Agriculture in the Mediterranean Area. Agronomy, 2022, 12, 1112.	3.0	6
47	Sampled Soil Volume Effect on Soil Physical Quality Determination: A Case Study on Conventional Tillage and No-Tillage of the Soil under Winter Wheat. Soil Systems, 2020, 4, 72.	2.6	5
48	Shade-Grown Coffee in Colombia Benefits Soil Hydraulic Conductivity. Sustainability, 2021, 13, 7768.	3.2	5
49	Soil Water Conservation: Dynamics and Impact. Water (Switzerland), 2018, 10, 952.	2.7	4
50	Sustainable Agriculture and Soil Conservation. Applied Sciences (Switzerland), 2021, 11, 4146.	2.5	3
51	Short- and Medium-Term Effects of On-Farm Compost Addition on the Physical and Hydraulic Properties of a Clay Soil. Agronomy, 2022, 12, 1446.	3.0	3
52	Soil Hydrology for a Sustainable Land Management: Theory and Practice. Water (Switzerland), 2020, 12, 1109.	2.7	2
53	Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-Arid Areas. Water (Switzerland), 2022, 14, 1830.	2.7	2
54	Impact of Pheidole fallax (Hymenoptera: Formicidae) as an Ecosystem Engineer in Rehabilitated Coal Mine Areas. Applied Sciences (Switzerland), 2022, 12, 1573.	2.5	1