
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/231612/publications.pdf Version: 2024-02-01

SHUNRIN NINC

#	Article	IF	CITATIONS
1	TRF2 inhibition rather than telomerase disruption drives CD4T cell dysfunction during chronic viral infection. Journal of Cell Science, 2022, 135, .	2.0	4
2	TRIMming Type I Interferon-Mediated Innate Immune Response in Antiviral and Antitumor Defense. Viruses, 2021, 13, 279.	3.3	18
3	Long Non-coding RNA GAS5 Regulates T Cell Functions via miR21-Mediated Signaling in People Living With HIV. Frontiers in Immunology, 2021, 12, 601298.	4.8	24
4	Algorithm-Based Meta-Analysis Reveals the Mechanistic Interaction of the Tumor Suppressor LIMD1 With Non-Small-Cell Lung Carcinoma. Frontiers in Oncology, 2021, 11, 632638.	2.8	3
5	Blockade of SARS-CoV-2 spike protein-mediated cell–cell fusion using COVID-19 convalescent plasma. Scientific Reports, 2021, 11, 5558.	3.3	19
6	Long Noncoding RNA RUNXOR Promotes Myeloid-Derived Suppressor Cell Expansion and Functions via Enhancing Immunosuppressive Molecule Expressions during Latent HIV Infection. Journal of Immunology, 2021, 206, 2052-2060.	0.8	7
7	Mitochondrial Functions Are Compromised in CD4 T Cells From ART-Controlled PLHIV. Frontiers in Immunology, 2021, 12, 658420.	4.8	20
8	Immune Activation Induces Telomeric DNA Damage and Promotes Shortâ€Lived Effector T Cell Differentiation in Chronic HCV Infection. Hepatology, 2021, 74, 2380-2394.	7.3	11
9	The Ubiquitin Sensor and Adaptor Protein p62 Mediates Signal Transduction of a Viral Oncogenic Pathway. MBio, 2021, 12, e0109721.	4.1	8
10	SARS-CoV-2 specific memory T cell epitopes identified in COVID-19-recovered subjects. Virus Research, 2021, 304, 198508.	2.2	31
11	New Look of EBV LMP1 Signaling Landscape. Cancers, 2021, 13, 5451.	3.7	23
12	How Oncogenic Viruses Exploit p62-Mediated Selective Autophagy for Cancer Development. Annals of Immunology & Immunotherapy, 2021, 3, .	0.1	0
13	Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging Cell, 2021, 20, e13513.	6.7	39
14	Oxidative Stress Induces Mitochondrial Compromise in CD4 T Cells From Chronically HCV-Infected Individuals. Frontiers in Immunology, 2021, 12, 760707.	4.8	5
15	Telomeric injury by KML001 in human T cells induces mitochondrial dysfunction through the p53-PGC-1α pathway. Cell Death and Disease, 2020, 11, 1030.	6.3	23
16	Telomere and ATM Dynamics in CD4 T-Cell Depletion in Active and Virus-Suppressed HIV Infections. Journal of Virology, 2020, 94, .	3.4	9
17	HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3–miR124 Axis. Cells, 2020, 9, 2715.	4.1	33
18	Inhibition of topoisomerase IIA (Top2α) induces telomeric DNA damage and T cell dysfunction during chronic viral infection. Cell Death and Disease, 2020, 11, 196.	6.3	21

#	Article	IF	CITATIONS
19	A Matter of Life or Death: Productively Infected and Bystander CD4 T Cells in Early HIV Infection. Frontiers in Immunology, 2020, 11, 626431.	4.8	18
20	LncRNA HOTAIRM1 promotes MDSC expansion and suppressive functions through the HOXA1-miR124 axis during HCV infection. Scientific Reports, 2020, 10, 22033.	3.3	19
21	Long noncoding RNA HOTAIRM1 promotes myeloid-derived suppressor cell expansion and suppressive functions through up-regulating HOXA1 expression during latent HIV infection. Aids, 2020, 34, 2211-2221.	2.2	16
22	Topological DNA damage, telomere attrition and T cell senescence during chronic viral infections. Immunity and Ageing, 2019, 16, 12.	4.2	26
23	Disruption of Telomere Integrity and DNA Repair Machineries by KML001 Induces T Cell Senescence, Apoptosis, and Cellular Dysfunctions. Frontiers in Immunology, 2019, 10, 1152.	4.8	26
24	p62-mediated Selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLoS Pathogens, 2019, 15, e1007541.	4.7	42
25	ATM Deficiency Accelerates DNA Damage, Telomere Erosion, and Premature T Cell Aging in HIV-Infected Individuals on Antiretroviral Therapy. Frontiers in Immunology, 2019, 10, 2531.	4.8	27
26	The Multifunctional Protein p62 and Its Mechanistic Roles in Cancers. Current Cancer Drug Targets, 2019, 19, 468-478.	1.6	22
27	Insufficiency of DNA repair enzyme ATM promotes naive CD4 T-cell loss in chronic hepatitis C virus infection. Cell Discovery, 2018, 4, 16.	6.7	40
28	HCV-associated exosomes promote myeloid-derived suppressor cell expansion via inhibiting miR-124 to regulate T follicular cell differentiation and function. Cell Discovery, 2018, 4, 51.	6.7	34
29	Inhibition of TRF2 accelerates telomere attrition and DNA damage in naÃ ⁻ ve CD4 T cells during HCV infection. Cell Death and Disease, 2018, 9, 900.	6.3	27
30	LIMD1 is induced by and required for LMP1 signaling, and protects EBV-transformed cells from DNA damage-induced cell death. Oncotarget, 2018, 9, 6282-6297.	1.8	17
31	The Linear Ubiquitin Assembly Complex Modulates Latent Membrane Protein 1 Activation of NF-κB and Interferon Regulatory Factor 7. Journal of Virology, 2017, 91, .	3.4	23
32	Decline of miRâ€124 in myeloid cells promotes regulatory Tâ€cell development in hepatitis C virus infection. Immunology, 2017, 150, 213-220.	4.4	19
33	LMP1 signaling pathway activates IRF4 in latent EBV infection and a positive circuit between PI3K and Src is required. Oncogene, 2017, 36, 2265-2274.	5.9	25
34	Identification of <i>KANSARL</i> as the first cancer predisposition fusion gene specific to the population of European ancestry origin. Oncotarget, 2017, 8, 50594-50607.	1.8	24
35	"Toll-free―pathways for production of type I interferons. AIMS Allergy and Immunology, 2017, 1, 143-163.	0.5	9
36	Identification of PP1 as the First Phosphatase for IRF7. Journal of Cell Signaling, 2017, 02, .	0.3	1

#	Article	IF	CITATIONS
37	Hepatitis C virusâ€induced myeloidâ€derived suppressor cells regulate Tâ€cell differentiation and function via the signal transducer and activator of transcription 3 pathway. Immunology, 2016, 148, 377-386.	4.4	47
38	<scp>HCV</scp> â€induced miR146a controls <scp>SOCS</scp> 1/ <scp>STAT</scp> 3 and cytokine expression in monocytes to promote regulatory Tâ€cell development. Journal of Viral Hepatitis, 2016, 23, 755-766.	2.0	20
39	Protein phosphatase 1 abrogates IRF7â€mediated type I IFN response in antiviral immunity. European Journal of Immunology, 2016, 46, 2409-2419.	2.9	34
40	Protection of CD4+ T cells from hepatitis C virus infection-associated senescence via ΔNp63–miR-181a–Sirt1 pathway. Journal of Leukocyte Biology, 2016, 100, 1201-1211.	3.3	25
41	Expansion of myeloid-derived suppressor cells promotes differentiation of regulatory T cells in HIV-1+ individuals. Aids, 2016, 30, 1521-1531.	2.2	64
42	MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV. Reviews in Medical Virology, 2015, 25, 320-341.	8.3	21
43	Human DNA Exonuclease TREX1 Is Also an Exoribonuclease That Acts on Single-stranded RNA. Journal of Biological Chemistry, 2015, 290, 13344-13353.	3.4	31
44	Gene Expression Profiling Identifies IRF4-Associated Molecular Signatures in Hematological Malignancies. PLoS ONE, 2014, 9, e106788.	2.5	34
45	Interferon Regulatory Factor 4 Is Activated through c-Src-Mediated Tyrosine Phosphorylation in Virus-Transformed Cells. Journal of Virology, 2013, 87, 9672-9679.	3.4	16
46	IRF4 as an Oncogenic Biomarker for Hematological Malignancies. Journal of Oncobiomarkers, 2013, 1, .	0.1	6
47	IRF7: activation, regulation, modification and function. Genes and Immunity, 2011, 12, 399-414.	4.1	428
48	Innate immune modulation in EBV infection. Herpesviridae, 2011, 2, 1.	2.7	60
49	Oncogenic IRFs Provide a Survival Advantage for Epstein-Barr Virus- or Human T-Cell Leukemia Virus Type 1-Transformed Cells through Induction of BIC Expression. Journal of Virology, 2011, 85, 8328-8337.	3.4	50
50	The A20 Deubiquitinase Activity Negatively Regulates LMP1 Activation of IRF7. Journal of Virology, 2010, 84, 6130-6138.	3.4	63
51	PS2-61 Transcriptional regulation of miR-155 by IRFs in antiviral immunity and viral tumors. Cytokine, 2010, 52, 63.	3.2	0
52	The Epstein-Barr Virus (EBV) Deubiquitinating Enzyme BPLF1 Reduces EBV Ribonucleotide Reductase Activity. Journal of Virology, 2009, 83, 4345-4353.	3.4	63
53	TRAF6 and the Three C-Terminal Lysine Sites on IRF7 Are Required for Its Ubiquitination-Mediated Activation by the Tumor Necrosis Factor Receptor Family Member Latent Membrane Protein 1. Molecular and Cellular Biology, 2008, 28, 6536-6546.	2.3	94
54	Interferon Regulatory Factor 7 Is Activated by a Viral Oncoprotein through RIP-Dependent Ubiquitination. Molecular and Cellular Biology, 2007, 27, 2910-2918.	2.3	69

#	Article	lF	CITATIONS
55	Regulation of the Transcriptional Activity of the IRF7 Promoter by a Pathway Independent of Interferon Signaling. Journal of Biological Chemistry, 2005, 280, 12262-12270.	3.4	77
56	Interferon Regulatory Factor 7 Is Negatively Regulated by the Epstein-Barr Virus Immediate-Early Gene, BZLF-1. Journal of Virology, 2005, 79, 10040-10052.	3.4	98
57	Interferon Regulatory Factor 5 Represses Expression of the Epstein-Barr Virus Oncoprotein LMP1: Braking of the IRF7/LMP1 Regulatory Circuit. Journal of Virology, 2005, 79, 11671-11676.	3.4	41
58	Interferon Regulatory Factor 7 Regulates Expression of Epstein-Barr Virus Latent Membrane Protein 1: a Regulatory Circuit. Journal of Virology, 2003, 77, 9359-9368.	3.4	88
59	Identification of programmed cell death in situ in individual plant cells in vivo using a chromosome preparation technique. Journal of Experimental Botany, 2002, 53, 651-658.	4.8	31
60	Characterization of the early stages of programmed cell death in maize root cells by using comet assay and the combination of cell electrophoresis with annexin binding. Electrophoresis, 2002, 23, 2096.	2.4	27
61	Salt stress induces programmed cell death in prokaryotic organismAnabaena. Journal of Applied Microbiology, 2002, 93, 15-28.	3.1	111
62	Determination of copy number for 5S rDNA and centromeric sequence RCS2 in rice by Fiber-FISH. Science Bulletin, 2002, 47, 214.	1.7	4
63	Apoptotic Cell Death and Cellular Surface Negative Charge Increase in Maize Roots Exposed to Cytotoxic Stresses. Annals of Botany, 2001, 87, 575-583.	2.9	15
64	FISH analysis of the integration patterns in transgenic rice co-transformed by microprojectile bombardment. Science Bulletin, 2001, 46, 1965-1968.	1.7	2
65	Comparative genome research between maize and rice using genomicin situ hybridization. Science Bulletin, 2001, 46, 656-658.	1.7	2
66	Physical location of riceGm-6, Pi-5(t) genes inO. officinalis with BAC-FISH. Science Bulletin, 2001, 46, 659-661.	1.7	8
67	Detection of Alien Genes and Analysis of their Integration Position in Transgenic Rice by Fluorescence <i>in situ</i> Hybridization. Breeding Science, 2001, 51, 279-283.	1.9	0
68	Mammalian Apoptosis-associated Genes c-myc and p53 in Maize. Homologs and Their Locations Cytologia, 2000, 65, 261-270.	0.6	0
69	Maize nac1 and cld genes map to chromosome arms 10L and 2S, and to 4L and 5L, respectively. Chromosome Research, 2000, 8, 273-273.	2.2	0
70	An NMR study of the structural basis of the wide range of pharmacological functions of acetylsalicylic acid. IUBMB Life, 1999, 47, 665-671.	3.4	2
71	A novel method forin situ detection of apoptotic cell death in plants. Science Bulletin, 1999, 44, 1014-1017.	1.7	2
72	Bioinformatics-Driven Identification of p62 as A Crucial Oncogene in Liver Cancer. Frontiers in Oncology, 0, 12, .	2.8	1