Enrico Pisoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/231610/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Forecasting peak air pollution levels using NARX models. Engineering Applications of Artificial Intelligence, 2009, 22, 593-602.	4.3	120
2	Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches. Environment International, 2019, 130, 104825.	4.8	83
3	An integrated assessment tool to define effective air quality policies at regional scale. Environmental Modelling and Software, 2012, 38, 306-315.	1.9	78
4	Evaluating the impact of "Sustainable Urban Mobility Plans―on urban background air quality. Journal of Environmental Management, 2019, 231, 249-255.	3.8	78
5	PM2.5 source allocation in European cities: A SHERPA modelling study. Atmospheric Environment, 2018, 187, 93-106.	1.9	69
6	Surrogate models to compute optimal air quality planning policies at a regional scale. Environmental Modelling and Software, 2012, 34, 44-50.	1.9	65
7	Neuro-fuzzy and neural network systems for air quality control. Atmospheric Environment, 2009, 43, 4811-4821.	1.9	54
8	Electric light commercial vehicles: Are they the sleeping giant of electromobility?. Transportation Research, Part D: Transport and Environment, 2020, 86, 102421.	3.2	47
9	Impacts of the COVID-19 lockdown on air pollution at regional and urban background sites in northern Italy. Atmospheric Chemistry and Physics, 2021, 21, 7597-7609.	1.9	44
10	A cokriging based approach to reconstruct air pollution maps, processing measurement station concentrations and deterministic model simulations. Environmental Modelling and Software, 2011, 26, 778-786.	1.9	43
11	On the design and assessment of regional air quality plans: The SHERPA approach. Journal of Environmental Management, 2016, 183, 952-958.	3.8	43
12	A comparison of reanalysis techniques: Applying optimal interpolation and Ensemble Kalman Filtering to improve air quality monitoring at mesoscale. Science of the Total Environment, 2013, 458-460, 7-14.	3.9	38
13	Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool. Atmospheric Environment, 2018, 183, 84-93.	1.9	37
14	Global anthropogenic emissions in urban areas: patterns, trends, and challenges. Environmental Research Letters, 2021, 16, 074033.	2.2	37
15	A new approach to design source–receptor relationships for air quality modelling. Environmental Modelling and Software, 2015, 74, 66-74.	1.9	36
16	A multi-objective nonlinear optimization approach to designing effective air quality control policies. Automatica, 2008, 44, 1632-1641.	3.0	35
17	Quantification of non-linearities as a function of time averaging in regional air quality modeling applications. Atmospheric Environment, 2015, 103, 263-275.	1.9	34
18	A non-linear analysis to detect the origin of PM10 concentrations in Northern Italy. Science of the Total Environment, 2010, 409, 182-191.	3.9	33

#	Article	IF	CITATIONS
19	Adding spatial flexibility to source-receptor relationships for air quality modeling. Environmental Modelling and Software, 2017, 90, 68-77.	1.9	31
20	MODIS and OMI satellite observations supporting air quality monitoring. Radiation Protection Dosimetry, 2009, 137, 280-287.	0.4	30
21	Exploring trade-offs between air pollutants through an Integrated Assessment Model. Science of the Total Environment, 2014, 481, 7-16.	3.9	30
22	POMI: a model inter-comparison exercise over the Po Valley. Air Quality, Atmosphere and Health, 2013, 6, 701-715.	1.5	29
23	Modelling assessment of PM10 exposure control policies in Northern Italy. Ecological Modelling, 2008, 217, 219-229.	1.2	28
24	Dynamic evaluation of air quality models over European regions. Atmospheric Environment, 2015, 111, 185-194.	1.9	28
25	Multi-criteria analysis for PM10 planning. Atmospheric Environment, 2009, 43, 4833-4842.	1.9	27
26	Sensitivity to spatial resolution of modeling systems designing air quality control policies. Environmental Modelling and Software, 2010, 25, 66-73.	1.9	24
27	The impact on air quality of energy saving measures in the major cities signatories of the Covenant of Mayors initiative. Environment International, 2018, 118, 222-234.	4.8	24
28	Selecting effective ozone exposure control policies solving a two-objective problem. Ecological Modelling, 2007, 204, 93-103.	1.2	22
29	Air quality integrated assessment modelling in the context of EU policy: A way forward. Environmental Science and Policy, 2016, 65, 22-28.	2.4	22
30	Modeling Pareto efficient PM10 control policies in Northern Italy to reduce health effects. Atmospheric Environment, 2009, 43, 3243-3248.	1.9	21
31	Modelling the impacts of EU countries' electric car deployment plans on atmospheric emissions and concentrations. European Transport Research Review, 2019, 11, .	2.3	21
32	Active mobility versus motorized transport? User choices and benefits for the society. Science of the Total Environment, 2022, 806, 150627.	3.9	21
33	An integrated air quality forecast system for a metropolitan area. Journal of Environmental Monitoring, 2011, 13, 3437.	2.1	18
34	Urban pollution in the Danube and Western Balkans regions: The impact of major PM2.5 sources. Environment International, 2019, 133, 105158.	4.8	17
35	PM2.5 exposure as a risk factor for multiple sclerosis. An ecological study with a Bayesian mapping approach. Environmental Science and Pollution Research, 2021, 28, 2804-2809.	2.7	17
36	Why is the city's responsibility for its air pollution often underestimated? A focus on PM _{2.5} . Atmospheric Chemistry and Physics, 2021, 21, 18195-18212.	1.9	17

#	Article	IF	CITATIONS
37	Artificial Neural Networks to reconstruct incomplete satellite data: application to the Mediterranean Sea Surface Temperature. Nonlinear Processes in Geophysics, 2008, 15, 61-70.	0.6	15
38	Uncertainty evaluation in air quality planning decisions: a case study for Northern Italy. Environmental Science and Policy, 2016, 65, 39-47.	2.4	15
39	Emissions of Carbonaceous Particulate Matter and Ultrafine Particles from Vehicles—A Scientific Review in a Cross-Cutting Context of Air Pollution and Climate Change. Applied Sciences (Switzerland), 2022, 12, 3623.	1.3	15
40	Factor separation in air quality simulations. Ecological Modelling, 2008, 218, 383-392.	1.2	13
41	A methodology for the evaluation of re-analyzed PM10 concentration fields: a case study over the PO Valley. Air Quality, Atmosphere and Health, 2015, 8, 533-544.	1.5	13
42	Assessing the Impacts of Electric Vehicle Recharging Infrastructure Deployment Efforts in the European Union. Energies, 2019, 12, 2409.	1.6	13
43	Analyzing the efficiency of short-term air quality plans in European cities, using the CHIMERE air quality model. Air Quality, Atmosphere and Health, 2017, 10, 235-248.	1.5	12
44	Impacts of a climate change initiative on air pollutant emissions: Insights from the Covenant of Mayors. Environment International, 2020, 145, 106029.	4.8	12
45	Sensitivity of air quality modelling to different emission inventories: A case study over Europe. Atmospheric Environment: X, 2021, 10, 100111.	0.8	12
46	The impact of thermodynamic module in the CTM performances. Atmospheric Environment, 2012, 61, 652-660.	1.9	11
47	Applying the delta tool to support the Air Quality Directive: evaluation of the TCAM chemical transport model. Air Quality, Atmosphere and Health, 2014, 7, 335-346.	1.5	11
48	Estimation of shipping emissions using vessel Long Range Identification and Tracking data. Journal of Maps, 2017, 13, 946-954.	1.0	11
49	Comment to the paper "Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatalityâ€, by Ogen, 2020. Science of the Total Environment, 2020, 738, 139853.	3.9	11
50	Integrating Saharan dust forecasts into a regional chemical transport model: A case study over Northern Italy. Science of the Total Environment, 2012, 417-418, 224-231.	3.9	10
51	Supporting the improvement of air quality management practices: The "FAIRMODE pilot―activity. Journal of Environmental Management, 2019, 245, 122-130.	3.8	9
52	Boosting Climate Analysis With Semantically Uplifted Knowledge Graphs. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4708-4718.	2.3	9
53	An interactive tool for fractional order PID controllers. , 2009, , .		8
54	Comparing mesoscale chemistry-transport model and remote-sensed Aerosol Optical Depth. Atmospheric Environment, 2011, 45, 289-295.	1.9	8

#	Article	IF	CITATIONS
55	SHERPA-city: A web application to assess the impact of traffic measures on NO2 pollution in cities. Environmental Modelling and Software, 2021, 135, 104904.	1.9	8
56	The effect of air pollution on COVIDâ€19 severity in a sample of patients with multiple sclerosis. European Journal of Neurology, 2022, 29, 535-542.	1.7	8
57	Minimizing external indirect health costs due to aerosol population exposure: A case study from Northern Italy. Journal of Environmental Management, 2011, 92, 3136-3142.	3.8	7
58	Defining a nonlinear control problem to reduce particulate matter population exposure. Atmospheric Environment, 2012, 55, 410-416.	1.9	6
59	A Framework for Integrated Assessment Modelling. SpringerBriefs in Applied Sciences and Technology, 2017, , 9-35.	0.2	6
60	Strengths and Weaknesses of the Current EU Situation. SpringerBriefs in Applied Sciences and Technology, 2017, , 69-83.	0.2	6
61	Modelling the Impact of the Introduction of the EURO 6d-TEMP/6d Regulation for Light-Duty Vehicles on EU Air Quality. Applied Sciences (Switzerland), 2022, 12, 4257.	1.3	6
62	Application of the SHERPA source-receptor relationships, based on the EMEP MSC-W model, for the assessment of air quality policy scenarios. Atmospheric Environment: X, 2019, 4, 100047.	0.8	4
63	Deep learning techniques applied to super-resolution chemistry transport modeling for operational uses. Environmental Research Communications, 2021, 3, 085001.	0.9	4
64	Prioritising the sources of pollution in European cities: do air quality modelling applications provide consistent responses?. Geoscientific Model Development, 2020, 13, 5725-5736.	1.3	4
65	Inequality in exposure to air pollutants: A new perspective. Environmental Research, 2022, 212, 113358.	3.7	4
66	Optimal interpolation to re-analyse PM10 concentration modelling simulations. , 2009, , .		3
67	Tropospheric profile of NO 2 over the Po Valley measured with scan DOAS spectrometer. , 2009, , .		3
68	Multi-level policies for air quality: implications of national and sub-national emission reductions on population exposure. Air Quality, Atmosphere and Health, 2018, 11, 1121-1135.	1.5	3
69	Coupling European data and local air pollution models for integrated assessment. IFAC-PapersOnLine, 2018, 51, 67-72.	0.5	3
70	Spatial-Temporal Modelling of Disease Risk Accounting for PM2.5 Exposure in the Province of Pavia: An Area of the Po Valley. International Journal of Environmental Research and Public Health, 2021, 18, 658.	1.2	3
71	Uplifting Air Quality Data Using Knowledge Graph. , 2021, , .		3
72	Assessing the Impact of Local Policies on PM2.5 Concentration Levels: Application to 10 European Cities. Sustainability, 2022, 14, 6384.	1.6	3

#	Article	IF	CITATIONS
73	A multi-pollutant and multi-sectorial approach to screening the consistency of emission inventories. Geoscientific Model Development, 2022, 15, 5271-5286.	1.3	3
74	Off-line Data Assimilation to provide the best estimate of tropospheric ozone concentrations by means of EnKF. , 2010, , .		2
75	Environmental Over-Threshold Event Forecasting using NARX Models. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 10559-10564.	0.4	2
76	Combined use of space-borne observations of NO _{2 and regional CTM model for air quality monitoring in Northern Italy. International Journal of Environment and Pollution, 2011, 47, 158.}	0.2	2
77	From emissions to source allocation: Synergies and trade-offs between top-down and bottom-up information. Atmospheric Environment: X, 2020, 7, 100088.	0.8	2
78	Transboundary pollution and local emission impact in tropospheric ozone accumulation processes: control strategy modelling assessment. , 0, , .		1
79	Formalizing and solving the PM10 control problem. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 15511-15516.	0.4	1
80	A system of systems for air quality decision making. , 2012, , .		1
81	Uncertainty analysis in air quality control systems. , 2013, , .		1
82	Vertical Distribution of Lower Tropospheric <inline-formula> <tex-math notation="TeX">\$hbox{NO}_{2}\$</tex-math </inline-formula> Derived From Diffuse Solar Radiation Measurements: A Geometrical Retrieval Approach. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 4846-4857.	2.7	1
83	Current European AQ Planning at Regional and Local Scale. SpringerBriefs in Applied Sciences and Technology, 2017, , 37-68.	0.2	1
84	A Multi-Objective Problem to Select Optimal PM10 Control Policies. NATO Security Through Science Series C: Environmental Security, 2008, , 715-716.	0.1	1
85	Chapter 2.3 Multi-objective analysis to control ozone exposure. Developments in Environmental Science, 2007, 6, 96-108.	0.5	0
86	TWO-OBJECTIVE PROBLEM FOR TROPOSPHERIC OZONE CONTROL. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 333-338.	0.4	0
87	Emission reduction strategies to control tropospheric ozone: a multi-objective optimization approach. , 2007, , .		0
88	Control of PM10 concentrations over a regional domain. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 224-229.	0.4	0
89	Sequential Feature selection in a multi-objective optimization problem. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 10553-10558.	0.4	0
90	Sensitivity analysis to precursor emissions of multi-objective air quality control policies. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 12922-12927.	0.4	0

#	Article	IF	CITATIONS
91	Modelling and measurements of the atmospheric boundary layer in Sofia, Bulgaria. International Journal of Environment and Pollution, 2011, 46, 61.	0.2	0
92	Validation of a mesoscale meteorological simulation over Po Valley. International Journal of Environment and Pollution, 2011, 47, 149.	0.2	0
93	Modelling Evaluation of Emission Scenario Impact in Northern Italy. Lecture Notes in Computer Science, 2008, , 377-384.	1.0	0
94	Sequential Quadratic Programming and Simulating Annealing techniques to calculate optimized Air Quality control policies. , 2009, , .		0
95	Assimilation of Chemical Ground Measurements in Air Quality Modeling. Lecture Notes in Computer Science, 2010, , 157-164.	1.0	0
96	Cost-Effective Plans to Mitigate Air Quality Effects on Human Health in Northern Italy. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 693-697.	0.1	0
97	Modelling Evaluation of PM10 Exposure in Northern Italy in the Framework of CityDeltaIII Project. NATO Security Through Science Series C: Environmental Security, 2008, , 426-433.	0.1	0
98	Design and implementation of a new module to evaluate the cost of air pollutant abatement measures. Journal of Environmental Management, 2022, 317, 115486.	3.8	0