Tom Sizmur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2315704/publications.pdf Version: 2024-02-01

TOM SIZMUD

#	Article	IF	CITATIONS
1	Exploring implication of variation in biochar production on geotechnical properties of soil. Biomass Conversion and Biorefinery, 2024, 14, 5791-5801.	2.9	11
2	Impact of Eisenia fetida earthworms and biochar on potentially toxic element mobility and health of a contaminated soil. Science of the Total Environment, 2022, 806, 151255.	3.9	9
3	Field observations to establish the impact of fluvial flooding on potentially toxic element (PTE) mobility in floodplain soils. Science of the Total Environment, 2022, 811, 151378.	3.9	1
4	Cover crop residue diversity enhances microbial activity and biomass with additive effects on microbial structure. Soil Research, 2022, 60, 349-359.	0.6	6
5	Improving soil health and closing the yield gap of cocoa production in Ghana – A review. Scientific African, 2022, 15, e01075.	0.7	5
6	Impact of Zero Budget Natural Farming on Crop Yields in Andhra Pradesh, SE India. Sustainability, 2022, 14, 1689.	1.6	10
7	A review of microplastic fibres: generation, transport, and vectors for metal(loid)s in terrestrial environments. Environmental Sciences: Processes and Impacts, 2022, 24, 504-524.	1.7	7
8	Applying cover crop residues as diverse mixtures increases initial microbial assimilation of crop residueâ€derived carbon. European Journal of Soil Science, 2022, 73, .	1.8	6
9	Soil organic matter storage in temperate lowland arable, grassland and woodland topsoil and subsoil. Soil Use and Management, 2022, 38, 1532-1546.	2.6	14
10	Effect of Biochar on Micronutrient Availability and Uptake Into Leafy Greens in Two Urban Tropical Soils With Contrasting Soil pH. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	7
11	Dual stresses of flooding and agricultural land use reduce earthworm populations more than the individual stressors. Science of the Total Environment, 2021, 754, 142102.	3.9	8
12	The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil – A review. Science of the Total Environment, 2021, 754, 142040.	3.9	77
13	Plant, soil and faunal responses to a contrived pH gradient. Plant and Soil, 2021, 462, 505-524.	1.8	13
14	Evidence for root adaptation to a spatially discontinuous water availability in the absence of external water potential gradients. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2012892118.	3.3	7
15	#EnvChem2020: Chemistry of the Whole Environment Research. Environmental Toxicology and Chemistry, 2021, 40, 3261-3262.	2.2	0
16	The Effect of Flooding and Drainage Duration on the Release of Trace Elements from Floodplain Soils. Environmental Toxicology and Chemistry, 2020, 39, 2124-2135.	2.2	14
17	Elucidating the source–sink relationships of zinc biofortification in wheat grains: A review. Food and Energy Security, 2020, 9, e243.	2.0	23
18	Evaluating Heathland Restoration Belowground Using Different Quality Indices of Soil Chemical and Biological Properties. Agronomy, 2020, 10, 1140.	1.3	5

TOM SIZMUR

#	Article	IF	CITATIONS
19	Synthesis of earthworm trace metal uptake and bioaccumulation data: Role of soil concentration, earthworm ecophysiology, and experimental design. Environmental Pollution, 2020, 262, 114126.	3.7	33
20	Effect of Sieving on Ex Situ Soil Respiration of Soils from Three Land Use Types. Journal of Soil Science and Plant Nutrition, 2020, 20, 912-916.	1.7	11
21	Earthworms accelerate the biogeochemical cycling of potentially toxic elements: Results of a meta-analysis. Soil Biology and Biochemistry, 2020, 148, 107865.	4.2	41
22	Obtaining more benefits from crop residues as soil amendments by application as chemically heterogeneous mixtures. Soil, 2020, 6, 467-481.	2.2	12
23	Relationships between Potentially Toxic Elements in intertidal sediments and their bioaccumulation by benthic invertebrates. PLoS ONE, 2019, 14, e0216767.	1.1	19
24	Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena, 2019, 180, 401-415.	2.2	43
25	Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature. Environmental Science and Pollution Research, 2018, 25, 7730-7739.	2.7	41
26	Gaseous mercury flux from salt marshes is mediated by solar radiation and temperature. Atmospheric Environment, 2017, 153, 117-125.	1.9	20
27	Milled cereal straw accelerates earthworm (Lumbricus terrestris) growth more than selected organic amendments. Applied Soil Ecology, 2017, 113, 166-177.	2.1	34
28	Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 2017, 246, 34-47.	4.8	483
29	Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability. PLoS ONE, 2016, 11, e0155960.	1.1	4
30	Effects of coastal managed retreat on mercury biogeochemistry. Environmental Pollution, 2016, 209, 99-106.	3.7	2
31	A Simple and Versatile 2-Dimensional Platform to Study Plant Germination and Growth under Controlled Humidity. PLoS ONE, 2014, 9, e96730.	1.1	5
32	Biology as an Agent of Chemical and Mineralogical Change in Soil. Procedia Earth and Planetary Science, 2014, 10, 114-117.	0.6	6
33	LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants. PLoS ONE, 2014, 9, e100867.	1.1	23
34	Mercury and methylmercury bioaccumulation by polychaete worms is governed by both feeding ecology and mercury bioavailability in coastal mudflats. Environmental Pollution, 2013, 176, 18-25.	3.7	34
35	The polychaete worm <i>Nereis diversicolor</i> increases mercury lability and methylation in intertidal mudflats. Environmental Toxicology and Chemistry, 2013, 32, 1888-1895.	2.2	20
36	Modeling the photo-oxidation of dissolved organic matter by ultraviolet radiation in freshwater lakes: Implications for mercury bioavailability. Chemosphere, 2012, 88, 1220-1226.	4.2	21

TOM SIZMUR

#	Article	IF	CITATIONS
37	Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability. Journal of Environmental Monitoring, 2011, 13, 266-273.	2.1	52
38	Lumbricus terrestris L. does not impact on the remediation efficiency of compost and biochar amendments. Pedobiologia, 2011, 54, S211-S216.	0.5	32
39	Impact of gut passage and mucus secretion by the earthworm Lumbricus terrestris on mobility and speciation of arsenic in contaminated soil. Journal of Hazardous Materials, 2011, 197, 169-175.	6.5	39
40	Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution, 2011, 159, 616-622.	3.7	249
41	Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Environmental Pollution, 2011, 159, 742-748.	3.7	78
42	Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost. Environmental Pollution, 2011, 159, 1852-1860.	3.7	24
43	A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 2011, 159, 3269-3282.	3.7	1,251
44	Why does earthworm mucus decrease metal mobility?. Integrated Environmental Assessment and Management, 2010, 6, 777-779.	1.6	10
45	Do earthworms impact metal mobility and availability in soil? – A review. Environmental Pollution, 2009, 157, 1981-1989.	3.7	211
46	The impact of Eisenia veneta on As, Cu, Pb and Zn uptake by ryegrass (Lolium perenne L.). Mineralogical Magazine, 2008, 72, 495-499.	0.6	6
47	Application of Biochar for Soil Remediation. SSSA Special Publication Series, 0, , 295-324.	0.2	33
48	Absence of a home-field advantage within a short-rotation arable cropping system. Plant and Soil, 0, , .	1.8	1