
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2315366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon, 2019, 145, 433-444.	10.3	382
2	Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chemical Engineering Journal, 2020, 380, 122591.	12.7	225
3	Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Transactions, 2019, 48, 5193-5202.	3.3	224
4	Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents. Nano-Micro Letters, 2021, 13, 135.	27.0	182
5	Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. Journal of Materials Chemistry, 2011, 21, 4314.	6.7	161
6	MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochimica Acta, 2019, 323, 134826.	5.2	154
7	Non-Magnetic Bimetallic MOF-Derived Porous Carbon-Wrapped TiO2/ZrTiO4 Composites for Efficient Electromagnetic Wave Absorption. Nano-Micro Letters, 2021, 13, 75.	27.0	154
8	High-Efficiency Electromagnetic Wave Absorption of Cobalt-Decorated NH ₂ -UIO-66-Derived Porous ZrO ₂ /C. ACS Applied Materials & Interfaces, 2019, 11, 35959-35968.	8.0	145
9	CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon, 2021, 172, 488-496.	10.3	113
10	Analysis of the Promoted Activity and Molecular Mechanism of Hydrogen Production over Fine Au–Pt Alloyed TiO ₂ Photocatalysts. ACS Catalysis, 2015, 5, 3924-3931.	11.2	110
11	Ambient Chemical Fixation of CO ₂ Using a Robust Ag ₂₇ Clusterâ€Based Twoâ€Đimensional Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 20031-20036.	13.8	109
12	Metal sulfides based composites as promising efficient microwave absorption materials: A review. Journal of Materials Science and Technology, 2022, 104, 244-268.	10.7	90
13	Exploring the Origin of Enhanced Activity and Reaction Pathway for Photocatalytic H ₂ Production on Au/B-TiO ₂ Catalysts. ACS Catalysis, 2014, 4, 1451-1457.	11.2	86
14	Solidâ€ S olution Alloy Nanoparticles of the Immiscible Iridium–Copper System with a Wide Composition Range for Enhanced Electrocatalytic Applications. Angewandte Chemie - International Edition, 2018, 57, 4505-4509.	13.8	86
15	Sensitization of Pt/TiO ₂ Using Plasmonic Au Nanoparticles for Hydrogen Evolution under Visible-Light Irradiation. ACS Applied Materials & Interfaces, 2017, 9, 30575-30582.	8.0	82
16	Facile Synthesis of Three-Dimensional Porous Co/MnO Composites Derived from Bimetal Oxides for Highly Efficient Electromagnetic Wave Absorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 8687-8695.	6.7	78
17	Self-Assembled ZnO/Co Hybrid Nanotubes Prepared by Electrospinning for Lightweight and High-Performance Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2018, 1, 5297-5306.	5.0	76
18	Facile fabrication of Ni embedded TiO2/C core-shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Composites Part B: Engineering, 2020, 200, 108343.	12.0	73

#	Article	IF	CITATIONS
19	Bimetal oxide-derived flower-like heterogeneous Co/MnO@C composites with synergistic magnetic–dielectric attenuation for electromagnetic wave absorption. Journal of Materials Chemistry C, 2020, 8, 2451-2459.	5.5	69
20	Constructing 1T/2H MoS2 nanosheets/3D carbon foam for high-performance electromagnetic wave absorption. Journal of Colloid and Interface Science, 2021, 586, 613-620.	9.4	66
21	One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers. Chemical Engineering Journal, 2021, 410, 128295.	12.7	65
22	Tuning Phase Composition of TiO ₂ by Sn ⁴⁺ Doping for Efficient Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2015, 7, 23941-23948.	8.0	64
23	Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. Journal of Materials Chemistry C, 2020, 8, 13169-13188.	5.5	63
24	Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption. Carbon, 2022, 191, 525-534.	10.3	63
25	DFT calculations: A powerful tool for better understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Computational Materials Science, 2019, 170, 109202.	3.0	59
26	A MOF-derived ZrO ₂ /C nanocomposite for efficient electromagnetic wave absorption. Inorganic Chemistry Frontiers, 2020, 7, 385-393.	6.0	59
27	Probing the charge separation process on In 2 S 3 /Pt-TiO 2 nanocomposites for boosted visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2016, 198, 25-31.	20.2	56
28	Recent advances in ultra-small fluorescent Au nanoclusters toward oncological research. Nanoscale, 2019, 11, 17967-17980.	5.6	55
29	Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Research, 2021, 14, 2512-2534.	10.4	49
30	A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie - International Edition, 2019, 58, 2230-2235.	13.8	48
31	Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chemical Engineering Journal, 2021, 417, 129350.	12.7	47
32	The Effect of Surface Wettability and Coalescence Dynamics in Catalytic Performance and Catalyst Preparation: A Review. ChemCatChem, 2019, 11, 1576-1586.	3.7	45
33	State-of-the-art advancements in photo-assisted CO ₂ hydrogenation: recent progress in catalyst development and reaction mechanisms. Journal of Materials Chemistry A, 2020, 8, 24868-24894.	10.3	40
34	High-performance microwave absorption of MOFâ€derived Co3O4@N-doped carbon anchored on carbon foam. Journal of Colloid and Interface Science, 2021, 602, 197-206.	9.4	40
35	Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials, 2021, 274, 120873.	11.4	37
36	Electromagnetic wave absorption properties of Fe3O4 octahedral nanocrystallines in gigahertz range. Applied Physics A: Materials Science and Processing, 2011, 105, 351-354.	2.3	31

#	Article	IF	CITATIONS
37	Flower-like Hydroxyfluoride-Sensing Platform toward NO ₂ Detection. ACS Applied Materials & Interfaces, 2021, 13, 26278-26287.	8.0	30
38	Tailoring electromagnetic absorption performances of TiO2/Co/carbon nanofibers through tuning graphitization degrees. Ceramics International, 2020, 46, 4754-4761.	4.8	29
39	High-permittivity Sb2S3 single-crystal nanorods as a brand-new choice for electromagnetic wave absorption. Science China Materials, 2021, 64, 1733-1741.	6.3	28
40	Engineering the surface structure of porous indium oxide hexagonal nanotubes with antimony trioxide for highly-efficient nitrogen dioxide detection at low temperature. Applied Surface Science, 2019, 484, 853-863.	6.1	27
41	Novel ternary Co3O4/CeO2/CNTs composites for high-performance broadband electromagnetic wave absorption. Journal of Alloys and Compounds, 2021, 864, 158141.	5.5	27
42	Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications. Catalysts, 2019, 9, 658.	3.5	26
43	Platinumâ^'Copper Bimetallic Nanoparticles Supported on TiO2 as Catalysts for Photoâ^'thermal Catalytic Toluene Combustion. ACS Applied Nano Materials, 2022, 5, 1845-1854.	5.0	26
44	Synergistic photodynamic/photothermal bacterial inactivation over heterogeneous quaternized chitosan/silver/cobalt phosphide nanocomposites. Journal of Colloid and Interface Science, 2022, 616, 304-315.	9.4	25
45	Polypyrrole-coated Fe2O3 nanotubes constructed from nanoneedles as high-performance anodes for aqueous asymmetric supercapacitors. Dalton Transactions, 2020, 49, 9701-9709.	3.3	21
46	Enhanced supercapacitive performance of the CoFe ₂ O ₄ /CoFe ₂ S ₄ composite nanoflake array induced by surface sulfidation. New Journal of Chemistry, 2019, 43, 13491-13498.	2.8	20
47	Confined Auâ€Pd Ensembles in Mesoporous TiO ₂ Spheres for the Photocatalytic Oxidation of Acetaldehyde. ChemCatChem, 2013, 5, 3557-3561.	3.7	18
48	Effects of silica morphology on the shearâ€ŧhickening behavior of shear thickening fluids and stabbing resistance of fabric composites. Journal of Applied Polymer Science, 2020, 137, 48809.	2.6	18
49	Bioactive engineered photothermal nanomaterials: from theoretical understanding to cutting-edge application strategies in anti-cancer therapy. Materials Chemistry Frontiers, 2021, 5, 5257-5297.	5.9	18
50	Construction of Ni-Zn bimetal sulfides Heterostructured-hybrids for High-performance electromagnetic wave absorption. Journal of Colloid and Interface Science, 2022, 606, 1410-1420.	9.4	17
51	H2S sensing material Pt-WO3 nanorods with excellent comprehensive performance. Journal of Alloys and Compounds, 2022, 900, 163398.	5.5	17
52	Enhanced ppb-level formaldehyde sensing performance over Pt deposited SnO2 nanospheres. Journal of Alloys and Compounds, 2022, 899, 163230.	5.5	16
53	Advances and Perspectives of Photopromoted CO ₂ Hydrogenation for Methane Production: Catalyst Development and Mechanism Investigations. Energy & Fuels, 2022, 36, 6711-6735.	5.1	16
54	Novel synthesis of MoO3/Mo4O11/MoO2 heterogeneous nanobelts for wideband electromagnetic wave absorption. Journal of Alloys and Compounds, 2020, 817, 153309.	5.5	15

#	Article	IF	CITATIONS
55	Encapsulating Ir nanoparticles into UiO-66 for photo-thermal catalytic CO ₂ methanation under ambient pressure. Journal of Materials Chemistry A, 2022, 10, 12157-12167.	10.3	15
56	<i>In situ</i> transformation of ZIF-67 into hollow Co ₂ V ₂ O ₇ nanocages on graphene as a high-performance cathode for aqueous asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 3646-3656.	6.0	14
57	Solidâ€5olution Alloy Nanoparticles of the Immiscible Iridium–Copper System with a Wide Composition Range for Enhanced Electrocatalytic Applications. Angewandte Chemie, 2018, 130, 4595-4599.	2.0	13
58	Self-supported construction of three-dimensional NiCo2O4 hierarchical nanoneedles for high-performance microwave absorption. Ceramics International, 2021, 47, 34289-34296.	4.8	13
59	A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie, 2019, 131, 2252-2257.	2.0	11
60	Flakes-assembled porous ZnO/Ni hybrid nanotubes for efficient electromagnetic absorption. Journal of Alloys and Compounds, 2021, 881, 160575.	5.5	10
61	Boosting the electrochemical performance of Li ₄ Ti ₅ O ₁₂ through nitrogenâ€doped carbon coating. Applied Organometallic Chemistry, 2019, 33, e4957.	3.5	9
62	Synthesis and biodistribution of 99mTc(CO)3-DMSA-MIBI in mice. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278, 165-171.	1.5	8
63	Ambient Chemical Fixation of CO 2 Using a Robust Ag 27 Clusterâ€Based Twoâ€Dimensional Metal–Organic Framework. Angewandte Chemie, 2020, 132, 20206-20211.	2.0	7
64	p-Ni0.9Zn0.1O/n-ZnO nanosheets heterostructured composite fiber as high-performance H2S detection platform. Sensors and Actuators B: Chemical, 2022, 359, 131560.	7.8	5
65	Single-Molecule Detection of Acetylcholine by Translating the Neuronal Signal to a Single Distinct Electronic Peak. ACS Applied Bio Materials, 2020, 3, 6888-6896.	4.6	4
66	Frontispiece: A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie - International Edition, 2019, 58, .	13.8	1
67	Frontispiz: A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie, 2019, 131, .	2.0	Ο