
Melody A Swartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/231432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperplasia of Lymphatic Vessels in VEGF-C Transgenic Mice. Science, 1997, 276, 1423-1425.	6.0	1,160
2	Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnology, 2007, 25, 1159-1164.	9.4	1,142
3	Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature Reviews Immunology, 2005, 5, 617-628.	10.6	989
4	In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. Journal of Controlled Release, 2006, 112, 26-34.	4.8	605
5	Interstitial Fluid and Lymph Formation and Transport: Physiological Regulation and Roles in Inflammation and Cancer. Physiological Reviews, 2012, 92, 1005-1060.	13.1	538
6	Engineering synthetic vaccines using cues from natural immunity. Nature Materials, 2013, 12, 978-990.	13.3	500
7	Interstitial Flow and Its Effects in Soft Tissues. Annual Review of Biomedical Engineering, 2007, 9, 229-256.	5.7	491
8	Autologous Chemotaxis as a Mechanism of Tumor Cell Homing to Lymphatics via Interstitial Flow and Autocrine CCR7 Signaling. Cancer Cell, 2007, 11, 526-538.	7.7	483
9	Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nature Reviews Cancer, 2012, 12, 210-219.	12.8	461
10	Induction of Lymphoidlike Stroma and Immune Escape by Tumors That Express the Chemokine CCL21. Science, 2010, 328, 749-752.	6.0	429
11	Growth Factors Engineered for Super-Affinity to the Extracellular Matrix Enhance Tissue Healing. Science, 2014, 343, 885-888.	6.0	406
12	Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science, 2005, 118, 4731-4739.	1.2	322
13	VEGF-C Promotes Immune Tolerance in B16 Melanomas and Cross-Presentation of Tumor Antigen by Lymph Node Lymphatics. Cell Reports, 2012, 1, 191-199.	2.9	284
14	Interstitial Flow as a Guide for Lymphangiogenesis. Circulation Research, 2003, 92, 801-808.	2.0	263
15	Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials, 2014, 35, 814-824.	5.7	256
16	Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15779-15784.	3.3	254
17	Complete and Specific Inhibition of Adult Lymphatic Regeneration by a Novel VEGFR-3 Neutralizing Antibody. Journal of the National Cancer Institute, 2005, 97, 14-21.	3.0	226
18	Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19902-19907.	3.3	223

#	Article	IF	CITATIONS
19	Lymph node stromal cells acquire peptide–MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance. Journal of Experimental Medicine, 2014, 211, 1153-1166.	4.2	210
20	Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvascular Research, 2006, 72, 161-171.	1.1	207
21	Transmural Flow Modulates Cell and Fluid Transport Functions of Lymphatic Endothelium. Circulation Research, 2010, 106, 920-931.	2.0	207
22	Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials, 2012, 33, 6211-6219.	5.7	206
23	Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation. Vaccine, 2010, 28, 7897-7906.	1.7	199
24	Engineering Approaches to Immunotherapy. Science Translational Medicine, 2012, 4, 148rv9.	5.8	194
25	Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvascular Research, 2004, 68, 258-264.	1.1	189
26	Emerging roles of lymphatic endothelium in regulating adaptive immunity. Journal of Clinical Investigation, 2014, 124, 943-952.	3.9	188
27	Steady-State Antigen Scavenging, Cross-Presentation, and CD8+ T Cell Priming: A New Role for Lymphatic Endothelial Cells. Journal of Immunology, 2014, 192, 5002-5011.	0.4	178
28	Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Science Translational Medicine, 2017, 9, .	5.8	174
29	Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nature Materials, 2019, 18, 175-185.	13.3	172
30	Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nature Cell Biology, 2015, 17, 1193-1204.	4.6	170
31	Vascular Endothelial Growth Factor-C and C-C Chemokine Receptor 7 in Tumor Cell–Lymphatic Cross-talk Promote Invasive Phenotype. Cancer Research, 2009, 69, 349-357.	0.4	169
32	Enhancing Efficacy of Anticancer Vaccines by Targeted Delivery to Tumor-Draining Lymph Nodes. Cancer Immunology Research, 2014, 2, 436-447.	1.6	165
33	Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E989-97.	3.3	160
34	Lymphatic function, lymphangiogenesis, and cancer metastasis. Microscopy Research and Technique, 2001, 55, 92-99.	1.2	157
35	Lymphatic vessels regulate immune microenvironments in human and murine melanoma. Journal of Clinical Investigation, 2016, 126, 3389-3402.	3.9	157
36	Primary Human and Rat β-Cells Release the Intracellular Autoantigens GAD65, IA-2, and Proinsulin in Exosomes Together With Cytokine-Induced Enhancers of Immunity. Diabetes, 2017, 66, 460-473.	0.3	152

#	Article	IF	CITATIONS
37	Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1771-H1777.	1.5	148
38	Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nature Biomedical Engineering, 2020, 4, 531-543.	11.6	141
39	Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. Journal of Biomechanics, 1999, 32, 1297-1307.	0.9	140
40	Characterization of lymphangiogenesis in a model of adult skin regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1402-H1410.	1.5	135
41	Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Science Translational Medicine, 2019, 11, .	5.8	134
42	Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Science Translational Medicine, 2017, 9, .	5.8	131
43	Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. Journal of Allergy and Clinical Immunology, 2017, 140, 1339-1350.	1.5	128
44	Cooperative and redundant roles of VEGFRâ€⊋ and VEGFRâ€3 signaling in adult lymphangiogenesis. FASEB Journal, 2007, 21, 1003-1012.	0.2	126
45	Lymphatic drainage function and its immunological implications: From dendritic cell homing to vaccine design. Seminars in Immunology, 2008, 20, 147-156.	2.7	126
46	Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials, 2013, 34, 4339-4346.	5.7	116
47	Peripherally Administered Nanoparticles Target Monocytic Myeloid Cells, Secondary Lymphoid Organs and Tumors in Mice. PLoS ONE, 2013, 8, e61646.	1.1	116
48	Impaired Humoral Immunity and Tolerance in <i>K14-VEGFR-3-Ig</i> Mice That Lack Dermal Lymphatic Drainage. Journal of Immunology, 2012, 189, 2181-2190.	0.4	111
49	Engineering opportunities in cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14467-14472.	3.3	111
50	Overexpression of VEGF-C Causes Transient Lymphatic Hyperplasia but Not Increased Lymphangiogenesis in Regenerating Skin. Circulation Research, 2005, 96, 1193-1199.	2.0	108
51	Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine, 2011, 29, 6959-6966.	1.7	107
52	Collecting Lymphatic Vessel Permeability Facilitates Adipose Tissue Inflammation and Distribution of Antigen to Lymph Node–Homing Adipose Tissue Dendritic Cells. Journal of Immunology, 2015, 194, 5200-5210.	0.4	102
53	Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. Journal of Experimental Medicine, 2019, 216, 1091-1107.	4.2	102
54	Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Advanced Drug Delivery Reviews, 2017, 114, 43-59.	6.6	99

#	Article	IF	CITATIONS
55	Perivascular Macrophages Limit Permeability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2203-2212.	1.1	97
56	Regulation of tumor invasion by interstitial fluid flow. Physical Biology, 2011, 8, 015012.	0.8	96
57	Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials, 2017, 131, 160-175.	5.7	92
58	Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. Journal of Controlled Release, 2011, 156, 154-160.	4.8	90
59	Transcellular Pathways in Lymphatic Endothelial Cells Regulate Changes in Solute Transport by Fluid Stress. Circulation Research, 2017, 120, 1440-1452.	2.0	90
60	Recruitment of CD103 ⁺ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Science Advances, 2019, 5, eaay1357.	4.7	87
61	Immunomodulatory Roles of Lymphatic Vessels in Cancer Progression. Cancer Immunology Research, 2014, 2, 701-707.	1.6	76
62	A tissueâ€engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics. Biotechnology and Bioengineering, 2009, 103, 1224-1235.	1.7	73
63	Intravital Immunofluorescence for Visualizing the Microcirculatory and Immune Microenvironments in the Mouse Ear Dermis. PLoS ONE, 2013, 8, e57135.	1.1	56
64	6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice. Cancer Immunology, Immunotherapy, 2015, 64, 1033-1046.	2.0	56
65	Normal Dendritic Cell Mobilization to Lymph Nodes under Conditions of Severe Lymphatic Hypoplasia. Journal of Immunology, 2013, 190, 4608-4620.	0.4	53
66	Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing. Nature Biomedical Engineering, 2020, 4, 463-475.	11.6	53
67	Vaccine nanocarriers: Coupling intracellular pathways and cellular biodistribution to control CD4 vs CD8 T cell responses. Biomaterials, 2017, 132, 48-58.	5.7	50
68	Lymphatic endothelial cells prime naÃ⁻ve CD8+ T cells into memory cells under steady-state conditions. Nature Communications, 2020, 11, 538.	5.8	50
69	Lymphatic vessel density is associated with CD8 ⁺ T cell infiltration and immunosuppressive factors in human melanoma. Oncolmmunology, 2018, 7, e1462878.	2.1	47
70	Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice. Scientific Reports, 2015, 5, 14274.	1.6	42
71	Immune Checkpoint Ligand PD-L1 Is Upregulated in Pulmonary Lymphangioleiomyomatosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 723-732.	1.4	37
72	Lymphangiogenesis-inducing vaccines elicit potent and long-lasting T cell immunity against melanomas. Science Advances, 2021, 7, .	4.7	36

#	Article	IF	CITATIONS
73	Improving Efficacy and Safety of Agonistic Anti-CD40 Antibody Through Extracellular Matrix Affinity. Molecular Cancer Therapeutics, 2018, 17, 2399-2411.	1.9	34
74	Connecting (T)issues: How Research in Fascia Biology Can Impact Integrative Oncology. Cancer Research, 2016, 76, 6159-6162.	0.4	34
75	Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nature Biomedical Engineering, 2022, 6, 819-829.	11.6	32
76	T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. Cancer Research, 2017, 77, 658-671.	0.4	30
77	Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. Angiogenesis, 2014, 17, 347-357.	3.7	29
78	Nanoparticle Conjugation of Human Papillomavirus 16 E7-long Peptides Enhances Therapeutic Vaccine Efficacy against Solid Tumors in Mice. Cancer Immunology Research, 2018, 6, 1301-1313.	1.6	27
79	Combination of Synthetic Long Peptides and XCL1 Fusion Proteins Results in Superior Tumor Control. Frontiers in Immunology, 2019, 10, 294.	2.2	27
80	Generation of potent cellular and humoral immunity against SARS-CoV-2 antigens via conjugation to a polymeric glyco-adjuvant. Biomaterials, 2021, 278, 121159.	5.7	23
81	Engineering Targeting Materials for Therapeutic Cancer Vaccines. Frontiers in Bioengineering and Biotechnology, 2020, 8, 19.	2.0	23
82	VEGFR-3 Neutralization Inhibits Ovarian Lymphangiogenesis, Follicle Maturation, and Murine Pregnancy. American Journal of Pathology, 2013, 183, 1596-1607.	1.9	22
83	Myeloid Cells Orchestrate Systemic Immunosuppression, Impairing the Efficacy of Immunotherapy against HPV+ Cancers. Cancer Immunology Research, 2020, 8, 131-145.	1.6	21
84	Polymersomes Decorated with the SARS-CoV-2 Spike Protein Receptor-Binding Domain Elicit Robust Humoral and Cellular Immunity. ACS Central Science, 2021, 7, 1368-1380.	5.3	21
85	Prolonged residence of an albumin–IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nature Biomedical Engineering, 2021, 5, 387-398.	11.6	20
86	ADAM17 Promotes Motility, Invasion, and Sprouting of Lymphatic Endothelial Cells. PLoS ONE, 2015, 10, e0132661.	1.1	19
87	Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein. Virology, 2017, 512, 161-171.	1.1	19
88	A Cationic Micelle Complex Improves CD8+ T Cell Responses in Vaccination Against Unmodified Protein Antigen. ACS Biomaterials Science and Engineering, 2016, 2, 231-240.	2.6	18
89	Long-term Intravital Immunofluorescence Imaging of Tissue Matrix Components with Epifluorescence and Two-photon Microscopy. Journal of Visualized Experiments, 2014, , .	0.2	17
90	Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1. Journal of Investigative Dermatology, 2016, 136, 1172-1181.	0.3	17

#	Article	IF	CITATIONS
91	Inherent biomechanical traits enable infective filariae to disseminate through collecting lymphatic vessels. Nature Communications, 2019, 10, 2895.	5.8	17
92	Fibronectin EDA and CpG synergize to enhance antigen-specific Th1 and cytotoxic responses. Vaccine, 2016, 34, 2453-2459.	1.7	16
93	Experimental Drainage Device to Reduce Lymphoedema in a Rat Model. European Journal of Vascular and Endovascular Surgery, 2019, 57, 859-867.	0.8	13
94	Lymph Node-Targeted Synthetically Glycosylated Antigen Leads to Antigen-Specific Immunological Tolerance. Frontiers in Immunology, 2021, 12, 714842.	2.2	10
95	Dorsal Ear Skin Window for Intravital Imaging and Functional Analysis of Lymphangiogenesis. Methods in Molecular Biology, 2018, 1846, 261-277.	0.4	8
96	Trojan horses for immunotherapy. Nature Nanotechnology, 2019, 14, 196-197.	15.6	8
97	Pro-lymphangiogenic VEGFR-3 signaling modulates memory T cell responses in allergic airway inflammation. Mucosal Immunology, 2021, 14, 144-151.	2.7	8
98	Pathogenic Exploitation of Lymphatic Vessels. Cells, 2022, 11, 979.	1.8	6
99	Introduction to the special issue on lymphangiogenesis in inflammation. Angiogenesis, 2014, 17, 323-324.	3.7	4
100	Inflammatory lymphangiogenesis in postpartum breast tissue remodeling. Journal of Clinical Investigation, 2014, 124, 3704-3707.	3.9	4
101	Lymphoidal chemokine CCL19 promoted the heterogeneity of the breast tumor cell motility within a 3D microenvironment revealed by a Lévy distribution analysis. Integrative Biology (United Kingdom), 2020, 12, 12-20.	0.6	4
102	Cell jam. Nature Materials, 2015, 14, 970-971.	13.3	3
103	Adjuvant-free immunization with infective filarial larvae as lymphatic homing antigen carriers. Scientific Reports, 2020, 10, 1055.	1.6	1
104	Overcoming transport barriers to immunotherapy. Drug Delivery and Translational Research, 2021, 11, 2273-2275.	3.0	1
105	Active response of the lymphatic endothelium to acute inflammation vs. chronic lymphedema: in vivo and in vitro studies. FASEB Journal, 2007, 21, A848.	0.2	0
106	ACTIVE REGULATION OF LIPID TRANSPORT AND METABOLISM BY LYMPHATICS: COMPLIMENTARY IN VIVO AND IN VITRO STUDIES. FASEB Journal, 2009, 23, 813.2.	0.2	0