
Yusheng Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2314040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li–S Batteries. Nano Letters, 2020, 20, 1252-1261.	4.5	394
2	Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries. Nano Letters, 2013, 13, 4642-4649.	4.5	385
3	Highly Dispersed Cobalt Clusters in Nitrogenâ€Đoped Porous Carbon Enable Multiple Effects for Highâ€Performance Li–S Battery. Advanced Energy Materials, 2020, 10, 1903550.	10.2	192
4	Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science, 2022, 375, 66-70.	6.0	183
5	A Fireproof, Lightweight, Polymer–Polymer Solid-State Electrolyte for Safe Lithium Batteries. Nano Letters, 2020, 20, 1686-1692.	4.5	175
6	Anode Interface Engineering and Architecture Design for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1806532.	11.1	172
7	Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5, 786-793.	19.8	168
8	An Effective Approach To Protect Lithium Anode and Improve Cycle Performance for Li–S Batteries. ACS Applied Materials & Interfaces, 2014, 6, 15542-15549.	4.0	157
9	Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Longâ€Life Rechargeable Lithium–CO ₂ Batteries. Advanced Materials, 2018, 30, e1803124.	11.1	144
10	Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nature Communications, 2016, 7, 11774.	5.8	143
11	An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. Journal of Power Sources, 2016, 306, 70-77.	4.0	140
12	Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 31669-31676.	4.0	139
13	Scalable, Ultrathin, and Highâ€Temperatureâ€Resistant Solid Polymer Electrolytes for Energyâ€Dense Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	132
14	Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application. Composites Science and Technology, 2018, 164, 187-194.	3.8	129
15	Development and Challenges of Functional Electrolytes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1800919.	7.8	129
16	Enhanced Electrochemical Kinetics with Highly Dispersed Conductive and Electrocatalytic Mediators for Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2100810.	11.1	121
17	Advanced Lithium–Sulfur Batteries Enabled by a Bioâ€Inspired Polysulfide Adsorptive Brush. Advanced Functional Materials, 2016, 26, 8418-8426.	7.8	120
18	Surface Modification of Li-Rich Cathode Materials for Lithium-Ion Batteries with a PEDOT:PSS Conducting Polymer. ACS Applied Materials & Interfaces, 2016, 8, 23095-23104.	4.0	119

Yusheng Ye

#	Article	IF	CITATIONS
19	Boosting Fast Sodium Storage of a Largeâ€6calable Carbon Anode with an Ultralong Cycle Life. Advanced Energy Materials, 2018, 8, 1703159.	10.2	119
20	Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy, 2019, 60, 866-874.	8.2	113
21	Dynamic spatial progression of isolated lithium during battery operations. Nature, 2021, 600, 659-663.	13.7	111
22	Systematic Effect for an Ultralong Cycle Lithium–Sulfur Battery. Nano Letters, 2015, 15, 7431-7439.	4.5	110
23	Toward Practical Highâ€Energy Batteries: A Modularâ€Assembled Ovalâ€Like Carbon Microstructure for Thick Sulfur Electrodes. Advanced Materials, 2017, 29, 1700598.	11.1	110
24	Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li-S batteries. Science Advances, 2020, 6, eaay5098.	4.7	95
25	Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proceedings of the United States of America, 2020, 117, 29453-29461.	3.3	94
26	Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23635-23645.	4.0	93
27	Boosting Highâ€Rate Li–S Batteries by an MOFâ€Derived Catalytic Electrode with a Layerâ€byâ€Layer Structur Advanced Science, 2019, 6, 1802362.	^{e.} 5.6	91
28	A Li ⁺ conductive metal organic framework electrolyte boosts the high-temperature performance of dendrite-free lithium batteries. Journal of Materials Chemistry A, 2019, 7, 9530-9536.	5.2	88
29	Sulfur Nanodots Stitched in 2D "Bubble-Like―Interconnected Carbon Fabric as Reversibility-Enhanced Cathodes for Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 4694-4702.	7.3	84
30	Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 12559-12564.	5.2	83
31	Electrode Design with Integration of High Tortuosity and Sulfur-Philicity for High-Performance Lithium-Sulfur Battery. Matter, 2020, 2, 1605-1620.	5.0	83
32	Coloured low-emissivity films for building envelopes for year-round energy savings. Nature Sustainability, 2022, 5, 339-347.	11.5	80
33	A Morphologically Stable Li/Electrolyte Interface for Allâ€Solidâ€State Batteries Enabled by 3Dâ€Micropatterned Garnet. Advanced Materials, 2021, 33, e2104009.	11.1	76
34	Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17033-17041.	5.2	70
35	All-Solid-State Lithium–Sulfur Batteries Enhanced by Redox Mediators. Journal of the American Chemical Society, 2021, 143, 18188-18195.	6.6	66
36	Conductivity and Pseudocapacitance Optimization of Bimetallic Antimony–Indium Sulfide Anodes for Sodiumâ€ion Batteries with Favorable Kinetics. Advanced Science, 2018, 5, 1800613.	5.6	65

YUSHENG YE

#	Article	IF	CITATIONS
37	Oxygen-deficient ammonium vanadate for flexible aqueous zinc batteries with high energy density and rate capability at â^'30 °C. Materials Today, 2021, 43, 53-61.	8.3	65
38	Gluing Carbon Black and Sulfur at Nanoscale: A Polydopamineâ€Based "Nanoâ€Binder―for Double‧helled Sulfur Cathodes. Advanced Energy Materials, 2017, 7, 1601591.	10.2	64
39	Cation- deficient Zn0.3(NH4)0.3V4O10•0.91H2O for rechargeable aqueous zinc battery with superior low- temperature performance. Energy Storage Materials, 2021, 38, 389-396.	9.5	64
40	Sulfur cathode based on layered carbon matrix for high-performance Li–S batteries. Nano Energy, 2015, 12, 742-749.	8.2	57
41	Hierarchical mesoporous/macroporous Co ₃ O ₄ ultrathin nanosheets as free-standing catalysts for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 17620-17626.	5.2	54
42	Ionic liquid-based electrolyte with binary lithium salts for high performance lithium–sulfur batteries. Journal of Power Sources, 2015, 296, 10-17.	4.0	54
43	A modularly-assembled interlayer to entrap polysulfides and protect lithium metal anode for high areal capacity lithium–sulfur batteries. Energy Storage Materials, 2017, 9, 126-133.	9.5	50
44	Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective. Journal of Physical Chemistry Letters, 2018, 9, 1398-1414.	2.1	50
45	Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries. Nano Research, 2017, 10, 426-436.	5.8	42
46	Strongly Coupled Carbon Nanosheets/Molybdenum Carbide Nanocluster Hollow Nanospheres for Highâ€Performance Aprotic Li–O ₂ Battery. Small, 2018, 14, e1704366.	5.2	39
47	Habit plane-driven P2-type manganese-based layered oxide as long cycling cathode for Na-ion batteries. Journal of Power Sources, 2018, 383, 80-86.	4.0	38
48	A Pralineâ€Like Flexible Interlayer with Highly Mounted Polysulfide Anchors for Lithium–Sulfur Batteries. Small, 2017, 13, 1700357.	5.2	37
49	Electrolyte-Resistant Dual Materials for the Synergistic Safety Enhancement of Lithium-Ion Batteries. Nano Letters, 2021, 21, 2074-2080.	4.5	37
50	Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5142-5147.	5.2	35
51	Micrometer‣ized RuO ₂ Catalysts Contributing to Formation of Amorphous Naâ€Deficient Sodium Peroxide in Na–O ₂ Batteries. Advanced Functional Materials, 2017, 27, 1700632.	7.8	33
52	An Antipulverization and Highâ€Continuity Lithium Metal Anode for Highâ€Energy Lithium Batteries. Advanced Materials, 2021, 33, e2105029.	11.1	32
53	Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries. Nano Letters, 2020, 20, 5496-5503.	4.5	30
54	Oxygenated Nitrogenâ€Doped Microporous Nanocarbon as a Permselective Interlayer for Ultrastable Lithiumâ€6ulfur Batteries. ChemElectroChem, 2019, 6, 1094-1100.	1.7	27

YUSHENG YE

#	Article	IF	CITATIONS
55	A polypyrrole-supported carbon paper acting as a polysulfide trap for lithium–sulfur batteries. RSC Advances, 2015, 5, 94479-94485.	1.7	24
56	Electrical resistance of the current collector controls lithium morphology. Nature Communications, 2022, 13, .	5.8	20
57	Lifting the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991.	4.0	19
58	Endoplasmic-reticulum-like catalyst coating on separator to enhance polysulfides conversion for lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 67, 423-431.	7.1	14
59	From Flowerâ€Like to Spherical Deposition: A GCNT Aerogel Scaffold for Fastâ€Charging Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2102454.	10.2	14
60	Heat Conductor–Insulator Transition in Electrochemically Controlled Hybrid Superlattices. Nano Letters, 2022, 22, 5443-5450.	4.5	10
61	A Designed Lithiophilic Carbon Channel on Separator to Regulate Lithium Deposition Behavior. Small, 2022, 18, e2104390.	5.2	8
62	Coldâ€Starting Allâ€Solidâ€State Batteries from Room Temperature by Thermally Modulated Current Collector in Subâ€Minute. Advanced Materials, 2022, 34, .	11.1	5
63	Li-S-Batteries: Advanced Lithium-Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive Brush (Adv. Funct. Mater. 46/2016). Advanced Functional Materials, 2016, 26, 8564-8564.	7.8	4
64	Sensitive, portable heavy-metal-ion detection by the sulfidation method on a superhydrophobic concentrator (SPOT). One Earth, 2021, 4, 756-766.	3.6	2