List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2313986/publications.pdf Version: 2024-02-01

Αιι Ακς Αι/μ

#	Article	IF	CITATIONS
1	On new exact solutions of the generalized <scp>Fitzhugh–Nagumo</scp> equation with variable coefficients. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	0
2	A comparative study on <scp>nonâ€Newtonian</scp> fractionalâ€order Brinkman type fluid with two different kernels. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	2
3	Reproducing kernel Hilbert space method for the numerical solutions of fractional cancer tumor models. Mathematical Methods in the Applied Sciences, 2023, 46, 7632-7653.	1.2	7
4	On solutions of fuzzy fractional order complex population dynamical model. Numerical Methods for Partial Differential Equations, 2023, 39, 4595-4615.	2.0	8
5	Exact solutions of (2 + 1)â€dimensional Schrödinger's hyperbolic equation using different techniques. Numerical Methods for Partial Differential Equations, 2023, 39, 4575-4594.	2.0	10
6	Computational analysis of the third order dispersive fractional <scp>PDE</scp> under exponentialâ€decay and <scp>Mittagâ€Leffler</scp> type kernels. Numerical Methods for Partial Differential Equations, 2023, 39, 4533-4548.	2.0	20
7	Exact solutions of convective–diffusive <scp>Cahn–Hilliard</scp> equation using extended direct algebraic method. Numerical Methods for Partial Differential Equations, 2023, 39, 4517-4532.	2.0	9
8	On solutions of timeâ€fractional advection–diffusion equation. Numerical Methods for Partial Differential Equations, 2023, 39, 4489-4516.	2.0	6
9	Analysis of blood liquor model via nonlocal and singular constant proportional Caputo hybrid differential operator. Mathematical Methods in the Applied Sciences, 2023, 46, 7741-7750.	1.2	6
10	Convective flow of a fractional second grade fluid containing different nanoparticles with Prabhakar fractional derivative subject to nonâ€uniform velocity at the boundary. Mathematical Methods in the Applied Sciences, 2023, 46, 8148-8159.	1.2	15
11	Generalization method of generating the continuous nested distributions. International Journal of Nonlinear Sciences and Numerical Simulation, 2023, 24, 1327-1353.	0.4	2
12	Unsteady MHD flow of Maxwell fluid with Caputo–Fabrizio non-integer derivative model having slip/non-slip fluid flow and Newtonian heating at the boundary. Indian Journal of Physics, 2022, 96, 127-136.	0.9	12
13	Controllability of PDEs model for type 1 diabetes. Mathematical Methods in the Applied Sciences, 2022, 45, 8800-8808.	1.2	4
14	Variation in electronic and optical responses due to phase transformation of SrZrO3 from cubic to orthorhombic under high pressure: a computational insight. Indian Journal of Physics, 2022, 96, 1-9.	0.9	10
15	MHD Flow of a Newtonian Fluid in Symmetric Channel with ABC Fractional Model Containing Hybrid Nanoparticles. Combinatorial Chemistry and High Throughput Screening, 2022, 25, 1087-1102.	0.6	32
16	Modeling and analysis of fractional order Ebola virus model with Mittag-Leffler kernel. AEJ - Alexandria Engineering Journal, 2022, 61, 2062-2073.	3.4	28
17	Effect of vaccination to control COVID-19 with fractal fractional operator. AEJ - Alexandria Engineering Journal, 2022, 61, 3551-3557.	3.4	22
18	Stability analysis of timeâ€fractional differential equations with initial data. Mathematical Methods in the Applied Sciences, 2022, 45, 402-410.	1.2	2

#	Article	IF	CITATIONS
19	CHAOTIC BEHAVIOR OF BHALEKAR–GEJJI DYNAMICAL SYSTEM UNDER ATANGANA–BALEANU FRACTAL FRACTIONAL OPERATOR. Fractals, 2022, 30, .	1.8	13
20	Unsteady flow of fractional Burgers' fluid in a rotating annulus region with power law kernel. AEJ - Alexandria Engineering Journal, 2022, 61, 17-27.	3.4	26
21	Finite difference simulations for magnetically effected swirling flow of Newtonian liquid induced by porous disk with inclusion of thermophoretic particles diffusion. AEJ - Alexandria Engineering Journal, 2022, 61, 4341-4358.	3.4	15
22	Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7, 3912-3938.	0.7	3
23	Numerical scheme and stability analysis of stochastic Fitzhugh–Nagumo model. Results in Physics, 2022, 32, 105023.	2.0	20
24	Optimal solution of engineering design problems through differential gradient evolution plus algorithm: a hybrid approach. Physica Scripta, 2022, 97, 014002.	1.2	4
25	Deterministic and fractional modeling of a computer virus propagation. Results in Physics, 2022, 33, 105130.	2.0	21
26	ANALYSIS OF HIDDEN ATTRACTORS OF NON-EQUILIBRIUM FRACTAL-FRACTIONAL CHAOTIC SYSTEM WITH ONE SIGNUM FUNCTION. Fractals, 2022, 30, .	1.8	7
27	Fractional order COVID-19 model with transmission rout infected through environment. AIMS Mathematics, 2022, 7, 5156-5174.	0.7	14
28	Numerical Study of Natural Convection of Power Law Fluid in a Square Cavity Fitted with a Uniformly Heated T-Fin. Mathematics, 2022, 10, 342.	1.1	16
29	New Optical Solitons for Time Fractional Coupled Zakharov Equations. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	0.9	6
30	Fractional order model for complex Layla and Majnun love story with chaotic behaviour. AEJ - Alexandria Engineering Journal, 2022, 61, 6725-6738.	3.4	17
31	Significance of cold cylinder in heat control in power law fluid enclosed in isosceles triangular cavity generated by natural convection: A computational approach. AEJ - Alexandria Engineering Journal, 2022, 61, 7277-7290.	3.4	20
32	Onset about non-isothermal flow of Williamson liquid over exponential surface by computing numerical simulation in perspective of Cattaneo Christov heat flux theory. AEJ - Alexandria Engineering Journal, 2022, 61, 6139-6150.	3.4	28
33	Theoretical and numerical analysis of fractal fractional model of tumor-immune interaction with two different kernels. AEJ - Alexandria Engineering Journal, 2022, 61, 5735-5752.	3.4	18
34	Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7, 7274-7293.	0.7	2
35	A New Iterative Predictor-Corrector Algorithm for Solving a System of Nuclear Magnetic Resonance Flow Equations of Fractional Order. Fractal and Fractional, 2022, 6, 91.	1.6	1
36	A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations. AIMS Mathematics, 2022, 7, 9389-9404.	0.7	20

#	Article	IF	CITATIONS
37	Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative. AIMS Mathematics, 2022, 7, 7847-7865.	0.7	17
38	Construction and numerical analysis of a fuzzy non-standard computational method for the solution of an SEIQR model of COVID-19 dynamics. AIMS Mathematics, 2022, 7, 8449-8470.	0.7	13
39	Construction of optical solitons of Radhakrishnan–Kundu–Lakshmanan equation in birefringent fibers. Nonlinear Engineering, 2022, 11, 80-91.	1.4	34
40	Dynamical behavior of tumor-immune system with fractal-fractional operator. AIMS Mathematics, 2022, 7, 8751-8773.	0.7	12
41	Finite difference method for transmission dynamics of Contagious Bovine Pleuropneumonia. AIMS Mathematics, 2022, 7, 10303-10314.	0.7	1
42	A new application of the Legendre reproducing kernel method. AIMS Mathematics, 2022, 7, 10651-10670.	0.7	3
43	Computational Analysis of the Morphological Aspects of Triadic Hybridized Magnetic Nanoparticles Suspended in Liquid Streamed in Coaxially Swirled Disks. Nanomaterials, 2022, 12, 671.	1.9	11
44	New Type Modelling of the Circumscribed Self-Excited Spherical Attractor. Mathematics, 2022, 10, 732.	1.1	3
45	Transfer Functions by Laplace and Fractal Laplace Transforms. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	0.9	0
46	Structure Preserving Numerical Analysis of Reaction-Diffusion Models. Journal of Function Spaces, 2022, 2022, 1-18.	0.4	0
47	On Numerical Analysis of Bio-Ethanol Production Model with the Effect of Recycling and Death Rates under Fractal Fractional Operators with Three Different Kernels. Mathematics, 2022, 10, 1102.	1.1	5
48	Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy. Fractal and Fractional, 2022, 6, 162.	1.6	16
49	A Quantitative Approach to \$\$n{ext {th}}\$\$-Order Nonlinear Fuzzy Integro-Differential Equation. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	0.9	2
50	Analysis of a TB and HIV co-infection model under Mittag-Leffler fractal-fractional derivative. Physica Scripta, 2022, 97, 054011.	1.2	10
51	Reproducing kernel Hilbert space method for solving fractal fractional differential equations. Results in Physics, 2022, 35, 105225.	2.0	6
52	New Solutions of Nonlinear Dispersive Equation in Higher-Dimensional Space with Three Types of Local Derivatives. Fractal and Fractional, 2022, 6, 202.	1.6	6
53	New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor. Chaos, Solitons and Fractals, 2022, 158, 111956.	2.5	6
54	Effect of Sc and Zn doping on structure and electro-optical behavior in c-BiAlO3: A DFT trial. Materials Science in Semiconductor Processing, 2022, 146, 106633.	1.9	5

#	Article	IF	CITATIONS
55	Two approximation methods for fractional order Pseudo-Parabolic differential equations. AEJ - Alexandria Engineering Journal, 2022, 61, 10333-10339.	3.4	24
56	A novel method for fractal-fractional differential equations. AEJ - Alexandria Engineering Journal, 2022, 61, 9733-9748.	3.4	24
57	Heat and Flow Control in Cavity with Cold Circular Cylinder Placed in Non-Newtonian Fluid by Performing Finite Element Simulations. Coatings, 2022, 12, 16.	1.2	10
58	A Comparative Analysis of the Fractional-Order Coupled Korteweg–De Vries Equations with the Mittag–Leffler Law. Journal of Mathematics, 2022, 2022, 1-30.	0.5	47
59	New applications related to hepatitis C model. AIMS Mathematics, 2022, 7, 11362-11381.	0.7	3
60	The Extended Laguerre Polynomials $ A q, n. Journal of Function Spaces, 2022, 2022, 1-14.$	0.4	2
61	Applications of some new Krasnoselskii-type fixed-point results for generalized expansive and equiexpansive mappings. , 2022, 2022, .		2
62	On Solutions of the Stiff Differential Equations in Chemistry Kinetics with Fractal-Fractional Derivatives. Journal of Computational and Nonlinear Dynamics, 2022, , .	0.7	5
63	Analysis of the fractional diarrhea model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7, 13000-13018.	0.7	4
64	Approximate Solution of Nonlinear Time-Fractional Klein-Gordon Equations Using Yang Transform. Symmetry, 2022, 14, 907.	1.1	14
65	Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model. Chaos, Solitons and Fractals, 2022, 159, 112113.	2.5	15
66	Fractal fractional-order derivative for HIV/AIDS model with Mittag-Leffler kernel. AEJ - Alexandria Engineering Journal, 2022, 61, 10965-10980.	3.4	49
67	Analysis of HIV/AIDS model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7, 13383-13401.	0.7	6
68	Analysis of fuzzified boundary value problems for MHD Couette and Poiseuille flow. Scientific Reports, 2022, 12, 8368.	1.6	10
69	Novel Analysis of Fractional-Order Fifth-Order Korteweg–de Vries Equations. Journal of Mathematics, 2022, 2022, 1-11.	0.5	0
70	Fractal–fractional operator for COVID-19 (Omicron) variant outbreak with analysis and modeling. Results in Physics, 2022, 39, 105630.	2.0	16
71	Novel Mathematical Modelling of Platelet-Poor Plasma Arising in a Blood Coagulation System with the Fractional Caputo–Fabrizio Derivative. Symmetry, 2022, 14, 1128.	1.1	8
72	Lyapunov stability and wave analysis of Covid-19 omicron variant of real data with fractional operator. AEJ - Alexandria Engineering Journal, 2022, 61, 11787-11802.	3.4	38

#	Article	IF	CITATIONS
73	On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nano tubes dispersion by executing nano-layer approach. AEJ - Alexandria Engineering Journal, 2022, 61, 11737-11751.	3.4	37
74	Analysis of e-cigarette smoking model by a novel technique. , 2022, , 79-98.		0
75	Modeling and analysis of computer virus fractional order model. , 2022, , 137-157.		2
76	Analysis of Fractional-Order Regularized Long-Wave Models via a Novel Transform. Journal of Function Spaces, 2022, 2022, 1-16.	0.4	14
77	Study of a Fractional System of Predator-Prey with Uncertain Initial Conditions. Mathematical Problems in Engineering, 2022, 2022, 1-11.	0.6	2
78	Modeling and analysis fractal order cancer model with effects of chemotherapy. Chaos, Solitons and Fractals, 2022, 161, 112325.	2.5	18
79	Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator. AIMS Mathematics, 2022, 7, 15939-15964.	0.7	8
80	Analysis of respiratory mechanics models with different kernels. Open Physics, 2022, 20, 609-615.	0.8	13
81	Optimal variational iteration method for parametric boundary value problem. AIMS Mathematics, 2022, 7, 16649-16656.	0.7	8
82	Computational analysis of COVID-19 model outbreak with singular and nonlocal operator. AIMS Mathematics, 2022, 7, 16741-16759.	0.7	3
83	Some Fractional Derivatives with Different Kernels. International Journal of Applied and Computational Mathematics, 2022, 8, .	0.9	5
84	An Improved Estimation for Heterogeneous Datasets with Lower Detection Limits regarding Environmental Health. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-15.	0.7	1
85	A Novel Numerical Technique for Fractional Ordinary Differential Equations with Proportional Delay. Journal of Function Spaces, 2022, 2022, 1-21.	0.4	4
86	A comprehensive mathematical structuring of magnetically effected Sutterby fluid flow immersed in dually stratified medium under boundary layer approximations over a linearly stretched surface. AEJ - Alexandria Engineering Journal, 2022, 61, 11889-11898.	3.4	45
87	Modeling and numerical investigation of fractionalâ€order bovine babesiosis disease. Numerical Methods for Partial Differential Equations, 2021, 37, 1946-1964.	2.0	20
88	An analysis of a mathematical fractional model of hybrid viscous nanofluids and its application in heat and mass transfer. Journal of Computational and Applied Mathematics, 2021, 383, 113096.	1.1	18
89	Novel applications of the magnetohydrodynamics couple stress fluid flows between two plates with fractalâ€fractional derivatives. Numerical Methods for Partial Differential Equations, 2021, 37, 2178-2189.	2.0	13
90	New applications related to Covid-19. Results in Physics, 2021, 20, 103663.	2.0	29

#	Article	IF	CITATIONS
91	On the MHD boundary layer flow with diffusion and chemical reaction over a porous flat plate with suction/blowing: two reliable methods. Engineering With Computers, 2021, 37, 1147-1158.	3.5	7
92	Discretization of the method of generating an expanded family of distributions based upon truncated distributions. Thermal Science, 2021, 25, 19-30.	0.5	1
93	Solutions of Integral Equations by Reproducing Kernel Hilbert Space Method. Studies in Systems, Decision and Control, 2021, , 103-124.	0.8	0
94	A new application of the reproducing kernel method. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 2041.	0.6	5
95	On solutions of fractal fractional differential equations. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3441.	0.6	20
96	A study of fractional order Ambartsumian equation involving exponential decay kernel. AIMS Mathematics, 2021, 6, 9981-9997.	0.7	27
97	On \$ psi \$-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2021, 7, 82-103.	0.7	12
98	Modeling and simulation of fractional order COVIDâ€19 model with quarantinedâ€isolated people. Mathematical Methods in the Applied Sciences, 2021, 44, 6389-6405.	1.2	13
99	Reproducing kernel functions and homogenizing transforms. Thermal Science, 2021, 25, 9-18.	0.5	8
100	Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3401.	0.6	11
101	On solutions of the Newell–Whitehead–Segel equation and Zeldovich equation. Mathematical Methods in the Applied Sciences, 2021, 44, 7134-7149.	1.2	14
102	Numerical solution of time-fractional coupled Korteweg–de Vries and Klein–Gordon equations by local meshless method. Pramana - Journal of Physics, 2021, 95, 1.	0.9	28
103	Analysis and applications of the proportional Caputo derivative. Advances in Difference Equations, 2021, 2021, .	3.5	15
104	A FRACTAL FRACTIONAL MODEL FOR CERVICAL CANCER DUE TO HUMAN PAPILLOMAVIRUS INFECTION. Fractals, 2021, 29, 2140015.	1.8	20
105	Modeling of fractionalâ€order COVIDâ€19 epidemic model with quarantine and social distancing. Mathematical Methods in the Applied Sciences, 2021, 44, 9334-9350.	1.2	23
106	EXISTENCE RESULTS FOR ABC-FRACTIONAL DIFFERENTIAL EQUATIONS WITH NON-SEPARATED AND INTEGRAL TYPE OF BOUNDARY CONDITIONS. Fractals, 2021, 29, 2140016.	1.8	7
107	Generalized form of fractional order COVIDâ€19 model with Mittag–Leffler kernel. Mathematical Methods in the Applied Sciences, 2021, 44, 8598-8614.	1.2	7
108	Optimal existence of fractional order computer virus epidemic model and numerical simulations. Mathematical Methods in the Applied Sciences, 2021, 44, 10673-10685.	1.2	11

#	Article	IF	CITATIONS
109	Analysis of MHD Couette flow by fractal-fractional differential operators. Chaos, Solitons and Fractals, 2021, 146, 110893.	2.5	10
110	Computational analysis of fuzzy fractional order non-dimensional Fisher equation. Physica Scripta, 2021, 96, 084004.	1.2	20
111	Numerical Analysis of Time-Fractional Diffusion Equations via a Novel Approach. Journal of Function Spaces, 2021, 2021, 1-12.	0.4	4
112	New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives. Chaos, Solitons and Fractals, 2021, 146, 110877.	2.5	60
113	On the solutions of boundary value problems. International Journal of Optimization and Control: Theories and Applications, 2021, 11, 199-205.	0.8	0
114	Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator. Chaos, Solitons and Fractals, 2021, 146, 110900.	2.5	30
115	Heat transfer analysis of magnetohydrodynamic Casson fluid through a porous medium with constant proportional Caputo derivative. Heat Transfer, 2021, 50, 6444-6464.	1.7	7
116	A fractal fractional model for computer virus dynamics. Chaos, Solitons and Fractals, 2021, 147, 110947.	2.5	10
117	On solutions of an obesity model in the light of new type fractional derivatives. Chaos, Solitons and Fractals, 2021, 147, 110956.	2.5	1
118	Heat and mass transport impact on MHD secondâ€gradeÂfluid: A comparative analysis of fractional operators. Heat Transfer, 2021, 50, 7042-7064.	1.7	22
119	Analysis of fractal-fractional model of tumor-immune interaction. Results in Physics, 2021, 25, 104178.	2.0	24
120	Numerical Solution of the Fractional Relaxation-Oscillation Equation by Using Reproducing Kernel Hilbert Space Method. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	3
121	Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model. AEJ - Alexandria Engineering Journal, 2021, 60, 4121-4130.	3.4	33
122	On solution of fuzzy Volterra integro-differential equations. Arab Journal of Basic and Applied Sciences, 2021, 28, 330-339.	1.0	4
123	Numerical Analysis of Natural Convection Driven Flow of a Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure with a U-Shaped Constructal. Energies, 2021, 14, 5355.	1.6	15
124	A novel method for analysing the fractal fractional integrator circuit. AEJ - Alexandria Engineering Journal, 2021, 60, 3721-3729.	3.4	29
125	Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function. Advances in Difference Equations, 2021, 2021, 387.	3.5	29
126	Study of HIV Disease and Its Association with Immune Cells under Nonsingular and Nonlocal Fractal-Fractional Operator. Complexity, 2021, 2021, 1-12.	0.9	8

#	Article	IF	CITATIONS
127	Exact solutions for Kraenkel-Manna-Merle model in saturated ferromagnetic materials using β-derivative. Physica Scripta, 2021, 96, 124018.	1.2	17
128	Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates. AEJ - Alexandria Engineering Journal, 2021, 60, 3593-3604.	3.4	62
129	Modelling and simulations of the SEIR and Blood Coagulation systems using Atangana-Baleanu-Caputo derivative. Chaos, Solitons and Fractals, 2021, 150, 111135.	2.5	19
130	Recovering source term of the time-fractional diffusion equation. Pramana - Journal of Physics, 2021, 95, 1.	0.9	5
131	A Novel Homotopy Perturbation Method with Applications to Nonlinear Fractional Order KdV and Burger Equation with Exponential-Decay Kernel. Journal of Function Spaces, 2021, 2021, 1-11.	0.4	34
132	Numerical Solutions to the Time-Fractional Swift–Hohenberg Equation Using Reproducing Kernel Hilbert Space Method. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	3
133	Dynamics of chemically reactive Jeffery fluid embedded in permeable media along with influence of magnetic field on associated boundary layers under multiple slip conditions. Results in Physics, 2021, 28, 104558.	2.0	19
134	Approximate Solutions for Higher Order Linear and Nonlinear Boundary Value Problems. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	1
135	Thermophysical Investigation of Oldroyd-B Fluid with Functional Effects of Permeability: Memory Effect Study Using Non-Singular Kernel Derivative Approach. Fractal and Fractional, 2021, 5, 124.	1.6	23
136	Generalized Thermal Flux Flow for Jeffrey Fluid with Fourier Law over an Infinite Plate. Mathematical Problems in Engineering, 2021, 2021, 1-9.	0.6	9
137	Dynamical Analysis of Bio-Ethanol Production Model under Generalized Nonlocal Operator in Caputo Sense. Mathematics, 2021, 9, 2370.	1.1	27
138	Structure preserving numerical scheme for spatio-temporal epidemic model of plant disease dynamics. Results in Physics, 2021, 30, 104821.	2.0	2
139	Exact solutions involving special functions for unsteady convective flow of magnetohydrodynamic second grade fluid with ramped conditions. Advances in Difference Equations, 2021, 2021, .	3.5	20
140	Stochastic COVID-19 SEIQ epidemic model with time-delay. Results in Physics, 2021, 30, 104775.	2.0	23
141	Semi-analytical solutions of the 3 order fuzzy dispersive partial differential equations under fractional operators. AEJ - Alexandria Engineering Journal, 2021, 60, 5861-5878.	3.4	17
142	Analytical study of soliton solutions for an improved perturbed Schrödinger equation with Kerr law non-linearity in non-linear optics by an expansion algorithm. Partial Differential Equations in Applied Mathematics, 2021, 4, 100102.	1.3	21
143	Solution of chemical dynamic optimization systems using novel differential gradient evolution algorithm. Physica Scripta, 2021, 96, 035212.	1.2	7
144	On solutions of fractional order time varying linear dynamical systems model. Arab Journal of Basic and Applied Sciences, 2021, 28, 300-308.	1.0	1

#	Article	IF	CITATIONS
145	Reproducing kernel method for the solutions of non-linear partial differential equations. Arab Journal of Basic and Applied Sciences, 2021, 28, 80-86.	1.0	5
146	New soliton solutions of the 2Dâ€chiral nonlinear Schrodinger equation using two integration schemes. Mathematical Methods in the Applied Sciences, 2021, 44, 5663-5682.	1.2	27
147	A novel method for nonlinear singular oscillators. Journal of Low Frequency Noise Vibration and Active Control, 2021, 40, 1363-1372.	1.3	4
148	Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2021, 7, 756-783.	0.7	37
149	Analysis of newly developed fractal-fractional derivative with power law kernel for MHD couple stress fluid in channel embedded in a porous medium. Scientific Reports, 2021, 11, 20858.	1.6	16
150	Effect of Magnetic Field with Parabolic Motion on Fractional Second Grade Fluid. Fractal and Fractional, 2021, 5, 163.	1.6	6
151	Complex dynamics of multi strain TB model under nonlocal and nonsingular fractal fractional operator. Results in Physics, 2021, 30, 104823.	2.0	13
152	Applications of Magnetohydrodynamic Couple Stress Fluid Flow between Two Parallel Plates with Three Different Kernels. Journal of Function Spaces, 2021, 2021, 1-11.	0.4	2
153	New Aspects of Bloch Model Associated with Fractal Fractional Derivatives. Nonlinear Engineering, 2021, 10, 323-342.	1.4	1
154	Optical Solitons of Two Non-linear Models in Birefringent Fibres Using Extended Direct Algebraic Method. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	12
155	Mathematical Analysis of Biodegradation Model under Nonlocal Operator in Caputo Sense. Mathematics, 2021, 9, 2787.	1.1	11
156	A Novel Method for Solving Nonlinear Jerk Equations. Lecture Notes in Networks and Systems, 2021, , 23-33.	0.5	0
157	On Solutions of Fractional Telegraph Model with Mittag-Leffler Kernel. Journal of Computational and Nonlinear Dynamics, 2021, , .	0.7	2
158	Attribution of Multi-slips and Bioconvection for Micropolar Nanofluids Transpiration Through Porous Medium over an Extending Sheet with PST and PHF Conditions. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	12
159	Heat and Mass Transfer Impact on Differential Type Nanofluid with Carbon Nanotubes: A Study of Fractional Order System. Fractal and Fractional, 2021, 5, 231.	1.6	4
160	On Soliton Solutions of Perturbed Boussinesq and KdV-Caudery-Dodd-Gibbon Equations. Coatings, 2021, 11, 1429.	1.2	5
161	Bacillus Calmette Guerin (BCG) Immunotherapy for Bladder Cancer: A Control and Mathematical Analysis. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	1
162	A New Application of the Sumudu Transform for the Falling Body Problem. Journal of Function Spaces, 2021, 2021, 1-8.	0.4	1

#	Article	IF	CITATIONS
163	Exact analysis of electro-osmotic flow of Walters'-B fluid with non-singular kernel. Pramana - Journal of Physics, 2021, 95, 1.	0.9	8
164	Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special Functions. Fractal and Fractional, 2021, 5, 248.	1.6	19
165	Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model. AIMS Mathematics, 2021, 7, 4778-4792.	0.7	39
166	Numerical analysis of fractional human liver model in fuzzy environment. Journal of Taibah University for Science, 2021, 15, 840-851.	1.1	10
167	Two Dimensional Laplace Transform Coupled with the Marichev-Saigo-Maeda Integral Operator and the Generalized Incomplete Hypergeometric Function. Symmetry, 2021, 13, 2420.	1.1	4
168	Existence of Unique Solutions to the Telegraph Equation in Binary Reproducing Kernel Hilbert Spaces. Differential Equations and Dynamical Systems, 2020, 28, 715-744.	0.5	10
169	Approximate solutions to the conformable Rosenauâ€Hyman equation using the twoâ€step Adomian decomposition method with Pad é approximation. Mathematical Methods in the Applied Sciences, 2020, 43, 7632-7639.	1.2	11
170	Solutions of fractional gas dynamics equation by a new technique. Mathematical Methods in the Applied Sciences, 2020, 43, 1349-1358.	1.2	28
171	Application of fractional derivative on non-linear biochemical reaction models. International Journal of Intelligent Networks, 2020, 1, 52-58.	5.8	25
172	New Perspective on the Conventional Solutions of the Nonlinear Time-Fractional Partial Differential Equations. Complexity, 2020, 2020, 1-10.	0.9	57
173	Analysis of MHD generalized first problem of Stokes' in view of local and non-local fractal fractional differential operators. Chaos, Solitons and Fractals, 2020, 140, 110161.	2.5	10
174	An efficient numerical technique for a biological population model of fractional order. Chaos, Solitons and Fractals, 2020, 141, 110349.	2.5	20
175	Minimizing cell signalling pathway elements using lumping parameters. AEJ - Alexandria Engineering Journal, 2020, 59, 2161-2169.	3.4	5
176	Dynamical behaviour of fractional-order finance system. Pramana - Journal of Physics, 2020, 94, 1.	0.9	8
177	Analysis of the fractional tumour-immune-vitamins model with Mittag–Leffler kernel. Results in Physics, 2020, 19, 103559.	2.0	42
178	Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative. Fractal and Fractional, 2020, 4, 30.	1.6	24
179	Power law memory of natural convection flow of hybrid nanofluids with constant proportional Caputo fractional derivative due to pressure gradient. Pramana - Journal of Physics, 2020, 94, 1.	0.9	25
180	Analysis of Fractional Order Chaotic Financial Model with Minimum Interest Rate Impact. Fractal and Fractional, 2020, 4, 43.	1.6	26

#	Article	IF	CITATIONS
181	A mathematical analysis and simulation for Zika virus model with time fractional derivative. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	2
182	Mathematical modeling for enzyme inhibitors with slow and fast subsystems. Arab Journal of Basic and Applied Sciences, 2020, 27, 442-449.	1.0	3
183	Role of Zn in modification of electronic and optical properties of c-SrZrO ₃ : a computational insight. Physica Scripta, 2020, 95, 085212.	1.2	4
184	Treatment of HIV/AIDS epidemic model with vertical transmission by using evolutionary Padé-approximation. Chaos, Solitons and Fractals, 2020, 134, 109686.	2.5	14
185	Can transfer function and Bode diagram be obtained from Sumudu transform. AEJ - Alexandria Engineering Journal, 2020, 59, 1971-1984.	3.4	91
186	Analysis of fractal fractional differential equations. AEJ - Alexandria Engineering Journal, 2020, 59, 1117-1134.	3.4	166
187	Analysis and dynamical behavior of fractionalâ€order cancer model with vaccine strategy. Mathematical Methods in the Applied Sciences, 2020, 43, 4871.	1.2	21
188	On a Fractional Operator Combining Proportional and Classical Differintegrals. Mathematics, 2020, 8, 360.	1.1	193
189	Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model. AEJ - Alexandria Engineering Journal, 2020, 59, 2477-2490.	3.4	139
190	Abundant new analytical and approximate solutions to the generalized Schamel equation. Physica Scripta, 2020, 95, 075201.	1.2	69
191	Analytical solutions for free convection flow of Casson nanofluid over an infinite vertical plate. AIMS Mathematics, 2020, 6, 2344-2358.	0.7	10
192	Mathematical analysis and numerical simulation of co-infection of TB-HIV. Arab Journal of Basic and Applied Sciences, 2020, 27, 431-441.	1.0	6
193	Analysis of MHD viscous fluid flow through porous medium with novel power law fractional differential operator. Physica Scripta, 2020, 95, 115209.	1.2	22
194	On Solutions of Fractional order Telegraph Partial Differential Equation by Crank-Nicholson Finite Difference Method. Applied Mathematics and Nonlinear Sciences, 2020, 5, 163-170.	0.9	41
195	Analysis coronavirus disease (COVID-19) model using numerical approaches and logistic model. AIMS Bioengineering, 2020, 7, 130-146.	0.6	52
196	European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 889-909.	0.6	5
197	Numerical solution for time period of simple pendulum with large angle. Thermal Science, 2020, 24, 25-30.	0.5	3
198	New reproducing kernel functions in the reproducing kernel Sobolev spaces. AIMS Mathematics, 2020, 5, 482-496.	0.7	5

#	Article	IF	CITATIONS
199	The existence and uniqueness of solution for linear system of mixed Volterra-Fredholm integral equations in Banach space. AIMS Mathematics, 2020, 5, 226-235.	0.7	6
200	Solving the Nonlinear System of Third-Order Boundary Value Problems. Advances in Dynamics, Patterns, Cognition, 2019, , 103-119.	0.2	2
201	Comparison on Solving a Class of Nonlinear Systems of Partial Differential Equations and Multiple Solutions of Second Order Differential Equations. Advances in Dynamics, Patterns, Cognition, 2019, , 161-190.	0.2	0
202	A fast iterative method to find the matrix geometric mean of two HPD matrices. Mathematical Methods in the Applied Sciences, 2019, 42, 5615-5625.	1.2	1
203	A greedy algorithm for partition of unity collocation method in pricing American options. Mathematical Methods in the Applied Sciences, 2019, 42, 5595-5606.	1.2	7
204	How to construct a fourth-order scheme for Heston-Hull-White equation?. AIP Conference Proceedings, 2019, , .	0.3	3
205	Crank–Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana–Baleanu Caputo derivative. Chaos, Solitons and Fractals, 2019, 127, 10-16.	2.5	59
206	A Novel Method for Solutions of Fourth-Order Fractional Boundary Value Problems. Fractal and Fractional, 2019, 3, 33.	1.6	34
207	A fractional Newton method with <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e1422" altimg="si1.svg"><mml:mn>2</mml:mn><mml:mi>α</mml:mi></mml:math> th-order of convergence and its stability. Applied Mathematics Letters, 2019, 98, 344-351	1.5	51
208	Some applications of novel numerical methods for differential equations. AIP Conference Proceedings, 2019, , .	0.3	0
209	Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell–Eyring non-Newtonian fluid. Journal of Taibah University for Science, 2019, 13, 858-863.	1.1	39
210	Improved numerical solution of multi-asset option pricing problem: A localized RBF-FD approach. Chaos, Solitons and Fractals, 2019, 119, 298-309.	2.5	24
211	Reproducing kernel Hilbert space method for the solutions of generalized Kuramoto–Sivashinsky equation. Journal of Taibah University for Science, 2019, 13, 661-669.	1.1	11
212	An optimized Steffensen-type iterative method with memory associated with annuity calculation. European Physical Journal Plus, 2019, 134, 1.	1.2	3
213	Reproducing Kernel Method for Fractional Derivative with Non-local and Non-singular Kernel. Studies in Systems, Decision and Control, 2019, , 1-12.	0.8	11
214	Asset pricing for an affine jumpâ€diffusion model using an FD method of lines on nonuniform meshes. Mathematical Methods in the Applied Sciences, 2019, 42, 578-591.	1.2	7
215	A Novel Technique for Fractional Bagley–Torvik Equation. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2019, 89, 539-545.	0.8	25
216	On an improved computational solution for the 3D HCIR PDE in finance. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2019, 27, 207-230.	0.1	3

#	Article	IF	CITATIONS
217	Solitary wave solutions of time–space nonlinear fractional Schrödinger's equation: Two analytical approaches. Journal of Computational and Applied Mathematics, 2018, 339, 147-160.	1.1	60
218	On solutions to the secondâ€order partial differential equations by two accurate methods. Numerical Methods for Partial Differential Equations, 2018, 34, 1678-1692.	2.0	10
219	Reproducing kernel functions for the generalized Kuramoto-Sivashinsky equation. ITM Web of Conferences, 2018, 22, 01028.	0.4	0
220	New Numerical Method for Solving Tenth Order Boundary Value Problems. Mathematics, 2018, 6, 245.	1.1	5
221	Reproducing kernel functions and bounded linear operator for solving fractional nonlinear boundary value problems. AIP Conference Proceedings, 2018, , .	0.3	0
222	On solutions of fractional differential equations. AIP Conference Proceedings, 2018, , .	0.3	0
223	Reproducing kernel functions for linear tenth-order boundary value problems. ITM Web of Conferences, 2018, 22, 01027.	0.4	1
224	Numerical Solution of Fractional Bratu Type Equations with Legendre Reproducing Kernel Method. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	0.9	13
225	Some applications of the novel numerical methods. AIP Conference Proceedings, 2018, , .	0.3	0
226	Reproducing kernel method for strongly non-linear equation. AIP Conference Proceedings, 2018, , .	0.3	0
227	A homotopy perturbation solution for solving highly nonlinear fluid flow problem arising in mechanical engineering. AIP Conference Proceedings, 2018, , .	0.3	2
228	A new application of reproducing kernel Hilbert space method. AIP Conference Proceedings, 2018, , .	0.3	0
229	Invariant investigation on the system of Hirota-Satsuma coupled KdV equation. AIP Conference Proceedings, 2018, , .	0.3	0
230	A novel method for a fractional derivative with non-local and non-singular kernel. Chaos, Solitons and Fractals, 2018, 114, 478-482.	2.5	268
231	Solving Higher-Order Fractional Differential Equations by Reproducing Kernel Hilbert Space Method. Journal of Advanced Physics, 2018, 7, 98-102.	0.4	3
232	Mathematical Model for the Ebola Virus Disease. Journal of Advanced Physics, 2018, 7, 190-198.	0.4	12
233	New method for investigating the density-dependent diffusion Nagumo equation. Thermal Science, 2018, 22, 143-152.	0.5	9
234	Analytic approximate solutions for fluid flow in the presence of heat and mass transfer. Thermal Science, 2018, 22, 259-264.	0.5	8

#	Article	IF	CITATIONS
235	Nonlinear Self-Adjointness and Nonclassical Solutions of a Population Model with Variable Coefficients. Journal of Advanced Physics, 2018, 7, 103-109.	0.4	0
236	Classifications of Soliton Solutions of the Generalized Benjamin-Bona-Mahony Equation with Power-Law Nonlinearity. Journal of Advanced Physics, 2018, 7, 130-134.	0.4	0
237	REPRODUCING KERNEL HILBERT SPACE METHOD]{REPRESENTATION FOR THE REPRODUCING KERNEL HILBERT SPACE METHOD FOR A NONLINEAR SYSTEM. Hacettepe Journal of Mathematics and Statistics, 2018, 48, .	0.3	0
238	New approach for the Fornberg–Whitham type equations. Journal of Computational and Applied Mathematics, 2017, 312, 13-26.	1.1	33
239	On the solution of higherâ€order difference equations. Mathematical Methods in the Applied Sciences, 2017, 40, 6165-6171.	1.2	11
240	Group preserving scheme and reproducing kernel method for the Poisson–Boltzmann equation for semiconductor devices. Nonlinear Dynamics, 2017, 88, 2817-2829.	2.7	32
241	On solutions of fractional Riccati differential equations. Advances in Difference Equations, 2017, 2017, .	3.5	46
242	A novel simulation methodology of fractional order nuclear science model. Mathematical Methods in the Applied Sciences, 2017, 40, 6208-6219.	1.2	9
243	Analytical treatment of the couple stress fluid-filled thin elastic tubes. Optik, 2017, 145, 336-345.	1.4	2
244	Constructing two powerful methods to solve the Thomas–Fermi equation. Nonlinear Dynamics, 2017, 87, 1435-1444.	2.7	31
245	On soliton structures of generalized resonance equation with time dependent coefficients. Optik, 2017, 128, 218-223.	1.4	23
246	Solving the Lane–Emden Equation within a Reproducing Kernel Method and Group Preserving Scheme. Mathematics, 2017, 5, 77.	1.1	16
247	Some applications of the Reproducing Kernel Method (RKM) and the Group Preserving Scheme (GPS). AIP Conference Proceedings, 2017, , .	0.3	Ο
248	Numerical solution of fractional telegraph differential equations by theta-method. European Physical Journal: Special Topics, 2017, 226, 3693-3703.	1.2	30
249	Solitary Wave Solutions for the Sawada-Kotera Equation. Journal of Advanced Physics, 2017, 6, 288-293.	0.4	15
250	Application of Extended Adomian Decomposition Method and Extended Variational Iteration Method to Hirota-Satsuma Coupled KdV Equation. Journal of Advanced Physics, 2017, 6, 216-222.	0.4	7
251	A Numerical Investigation on Burgers Equation by MOL-GPS Method. Journal of Advanced Physics, 2017, 6, 413-417.	0.4	12
252	Solutions of nonlinear systems by reproducing kernel method. Journal of Nonlinear Science and Applications, 2017, 10, 4408-4417.	0.4	21

#	Article	IF	CITATIONS
253	On Solutions of Higher Order Boundary Value Problems. Journal of Advanced Physics, 2017, 6, 487-491.	0.4	0
254	On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method. Open Physics, 2016, 14, 685-689.	0.8	14
255	A new approach for one-dimensional sine-Gordon equation. Advances in Difference Equations, 2016, 2016, .	3.5	29
256	On solitons and invariant solutions of the Magneto-electro-elastic circular rod. Waves in Random and Complex Media, 2016, 26, 259-271.	1.6	33
257	Solving Delay Differential Equations by an Accurate Method with Interpolation. Abstract and Applied Analysis, 2015, 2015, 1-7.	0.3	11
258	New Reproducing Kernel Functions. Mathematical Problems in Engineering, 2015, 2015, 1-10.	0.6	26
259	Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique. Advances in Difference Equations, 2015, 2015, .	3.5	57
260	Reproducing Kernel Hilbert Space Method for Solving Bratu's Problem. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38, 271-287.	0.4	32
261	Reproducing kernel functions for difference equations. Discrete and Continuous Dynamical Systems - Series S, 2015, 8, 1055-1064.	0.6	27
262	Numerical Solution of Seventh-Order Boundary Value Problems by a Novel Method. Abstract and Applied Analysis, 2014, 2014, 1-9.	0.3	14
263	Approximate solutions for MHD squeezing fluid flow by a novel method. Boundary Value Problems, 2014, 2014, .	0.3	27
264	Numerical Solutions of the Second-Order One-Dimensional Telegraph Equation Based on Reproducing Kernel Hilbert Space Method. Abstract and Applied Analysis, 2013, 2013, 1-13.	0.3	13
265	A New Application of the Reproducing Kernel Hilbert Space Method to Solve MHD Jeffery-Hamel Flows Problem in Nonparallel Walls. Abstract and Applied Analysis, 2013, 2013, 1-12.	0.3	11
266	A Novel Method for Solving KdV Equation Based on Reproducing Kernel Hilbert Space Method. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.3	12
267	Improved ()-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations. Abstract and Applied Analysis, 2013, 2013, 1-7.	0.3	31
268	Explicit Solution of Telegraph Equation Based on Reproducing Kernel Method. Journal of Function Spaces and Applications, 2012, 2012, 1-23.	0.5	25
269	Reproducing kernel method for Fangzhu's oscillator for water collection from air. Mathematical Methods in the Applied Sciences, 0, , .	1.2	26
270	Nonlinear magnetohydrodynamic flow of nanofluids across a porous matrix over an extending sheet with mass transpiration and bioconvection. Heat Transfer, 0, , .	1.7	5

#	Article	IF	CITATIONS
271	New numerical simulation of the oscillatory phenomena occurring in the bioethanol production process. Biomass Conversion and Biorefinery, 0, , 1.	2.9	0