Yang Ren

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2313705/yang-ren-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,891 85 830 133 h-index g-index citations papers 880 8.6 35,046 7.32 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
830	Native lattice strain induced structural earthquake in sodium layered oxide cathodes <i>Nature Communications</i> , 2022 , 13, 436	17.4	3
829	Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing. Journal of Materials Science and Technology, 2022, 116, 246-257	9.1	0
828	Interactions between martensitic NiTi shape memory alloy and Nb nanowires in composite wire during tensile deformation. <i>Composites Part B: Engineering</i> , 2022 , 234, 109690	10	1
827	A highly distorted ultraelastic chemically complex Elinvar alloy <i>Nature</i> , 2022 , 602, 251-257	50.4	4
826	High-throughput investigation of structural evolution upon solid-state in Cullrlo combinatorial multilayer thin-film. <i>Materials and Design</i> , 2022 , 215, 110455	8.1	1
825	Large thermal hysteresis in a single-phase NiTiNb shape memory alloy. Scripta Materialia, 2022, 212, 11	45.764	1
824	Folded network and structural transition in molten tin <i>Nature Communications</i> , 2022 , 13, 126	17.4	1
823	Extreme fast charge aging: Correlation between electrode scale and heterogeneous degradation in Ni-rich layered cathodes. <i>Journal of Power Sources</i> , 2022 , 521, 230961	8.9	5
822	Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2022 , 431, 133982	14.7	5
821	Large-strain Liders-type deformation of B19' martensite in Ni47Ti49Nb2Fe2 alloy. <i>Materials Science & Microstructure and Processing</i> , 2022 , 829, 142136	5.3	0
820	Tuning thermal expansion from strong negative to zero to positive in Cu2-xZnxP2O7 solid solutions. <i>Scripta Materialia</i> , 2022 , 207, 114289	5.6	O
819	Unblocking Oxygen Charge Compensation for Stabilized High-Voltage Structure in P2-Type Sodium-Ion Cathode <i>Advanced Science</i> , 2022 , e2200498	13.6	2
818	Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF. <i>Materials and Design</i> , 2022 , 215, 110460	8.1	3
817	Thermal dynamics of P2-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries studied by in situ analysis. <i>Journal of Materials Research</i> , 2022 , 37, 1156-1163	2.5	1
816	Effect of laser hatch spacing on the pore defects, phase transformation and properties of selective laser melting fabricated NiTi shape memory alloys. <i>Materials Science & Discounty of the Materials: Properties, Microstructure and Processing</i> , 2022 , 840, 142965	5.3	3
815	Unveiling the origins of work-hardening enhancement and mechanical instability in laser shock peened titanium. <i>Acta Materialia</i> , 2022 , 229, 117810	8.4	0
814	In-situ synchrotron-based high energy X-ray diffraction study of the deformation mechanism of Ehydrides in a commercially pure titanium. <i>Scripta Materialia</i> , 2022 , 213, 114608	5.6	1

(2021-2022)

813	High-performance LiNi0.8Mn0.1Co0.1O2 cathode by nanoscale lithium sulfide coating via atomic layer deposition. <i>Journal of Energy Chemistry</i> , 2022 , 69, 531-540	12	О
812	Uniting tensile ductility with ultrahigh strength via composition undulation <i>Nature</i> , 2022 , 604, 273-279	9 50.4	2
811	Acid-in-clay Electrolyte for Wide-temperature-range and Long-cycle proton Batteries <i>Advanced Materials</i> , 2022 , e2202063	24	4
810	Structure and thermodynamics of calcium rare earth silicate oxyapatites, Ca2RE8(SiO4)6O2 (RE = Pr, Tb, Ho, Tm). <i>Physics and Chemistry of Minerals</i> , 2022 , 49, 1	1.6	Ο
809	Plastic anisotropy and twin distributions near the fatigue crack tip of textured Mg alloys from in situ synchrotron X-ray diffraction measurements and multiscale mechanics modeling. <i>Journal of the Mechanics and Physics of Solids</i> , 2022 , 165, 104936	5	O
808	Small-scale confined R-phase transformation in Ni47Ti49Fe2-Nb2 alloy. <i>Materialia</i> , 2021 , 20, 101262	3.2	1
807	Local chemical fluctuation mediated ultra-sluggish martensitic transformation in high-entropy intermetallics <i>Materials Horizons</i> , 2021 ,	14.4	1
806	Spontaneous Strain Buffer Enables Superior Cycling Stability in Single-Crystal Nickel-Rich NCM Cathode. <i>Nano Letters</i> , 2021 , 21, 9997-10005	11.5	10
805	Shape memory effect in metallic glasses. <i>Matter</i> , 2021 , 4, 3327-3338	12.7	О
804	Spatial and Temporal Analysis of Sodium-Ion Batteries. ACS Energy Letters, 2021, 6, 4023-4054	20.1	12
803	Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. <i>Nature Communications</i> , 2021 , 12, 6024	17.4	21
802	Superior High-Temperature Strength in a Supersaturated Refractory High-Entropy Alloy. <i>Advanced Materials</i> , 2021 , 33, e2102401	24	7
801	High-Voltage and High-Safety Practical Lithium Batteries with Ethylene Carbonate-Free Electrolyte. <i>Advanced Energy Materials</i> , 2021 , 11, 2102299	21.8	14
800	Magnetostructural transition, magnetocaloric effect and critical exponent analysis in Nd(Co0.8Fe0.2)2 alloy. <i>Journal of Alloys and Compounds</i> , 2021 , 895, 162562	5.7	O
799	Atomic-scale constituting stable interface for improved LiNiMnCoO cathodes of lithium-ion batteries. <i>Nanotechnology</i> , 2021 , 32, 115401	3.4	5
798	Unravel unusual hardening behavior of a PdNiP metallic glass in its supercooled liquid region. <i>Applied Physics Letters</i> , 2021 , 118, 121902	3.4	O
797	Disorder trapping and formation of antiphase nanodomains in Ni3Sn: In situ observation and high resolution characterization. <i>Scripta Materialia</i> , 2021 , 193, 55-58	5.6	3
796	Temperature-dependent deformation behavior of a CuZr-based bulk metallic glass composite. <i>Journal of Alloys and Compounds</i> , 2021 , 858, 158368	5.7	3

Transferring elastic strain in Mo/Nb/TiNi multilayer nanocomposites by the principle of lattice

Thermal Stability and Lattice Strain Evolution of High-Nb-Containing TiAl Alloy under

Low-Cycle-Fatigue Loading. Advanced Engineering Materials, 2021, 23, 2001337

strain matching. Composites Part B: Engineering, 2021, 215, 108784

10

3.5

3

(2021-2021)

777	Completely Recrystallized Microstructures Investigated by In-Situ High-Energy X-ray Diffraction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3674-368	2.3 3	1
776	Engineering of Exciton Spatial Distribution in CdS Nanoplatelets. <i>Nano Letters</i> , 2021 , 21, 5201-5208	11.5	4
775	Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. <i>Matter</i> , 2021 , 4, 2013-2026	12.7	20
774	Role of Lithium Doping in P2-NaNiMnO for Sodium-Ion Batteries. <i>Chemistry of Materials</i> , 2021 , 33, 4445-	-44555	18
773	New Insights into the High-Performance Black Phosphorus Anode for Lithium-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2101259	24	14
772	In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. <i>Nature Communications</i> , 2021 , 12, 4235	17.4	17
771	High-throughput design of high-performance lightweight high-entropy alloys. <i>Nature Communications</i> , 2021 , 12, 4329	17.4	25
770	A Low-Cost Ni-Mn-Ti-B High-Temperature Shape Memory Alloy with Extraordinary Functional Properties. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	5
769	Oxygen addition for improving the strength and plasticity of TiZr-based amorphous alloy composites. <i>Journal of Materials Science and Technology</i> , 2021 , 79, 212-221	9.1	5
768	On temperature and strain-rate dependence of flow serration in HfNbTaTiZr high-entropy alloy. <i>Scripta Materialia</i> , 2021 , 200, 113919	5.6	1
767	Large elastic strains and ductile necking of W nanowires embedded in TiNi matrix. <i>Journal of Materials Science and Technology</i> , 2021 , 60, 56-60	9.1	2
766	An advanced low-cost cathode composed of graphene-coated Na2.4Fe1.8(SO4)3 nanograins in a 3D graphene network for ultra-stable sodium storage. <i>Journal of Energy Chemistry</i> , 2021 , 54, 564-570	12	5
765	A Ni-free Ērī alloy with large and stable room temperature super-elasticity. <i>Materials Today Communications</i> , 2021 , 26, 101838	2.5	O
764	A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. <i>Nature Nanotechnology</i> , 2021 , 16, 166-173	28.7	153
763	Full Concentration Gradient-Tailored Li-Rich Layered Oxides for High-Energy Lithium-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2001358	24	33
762	In-situ synchrotron diffraction study of the localized phase transformation and deformation behavior in NiTi SMA. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2021 , 805, 140560	5.3	3
761	Role of tetragonal distortion on domain switching and lattice strain of piezoelectrics by in-situ synchrotron diffraction. <i>Scripta Materialia</i> , 2021 , 194, 113627	5.6	2
760	Highly active and stable Co nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers for aqueous-phase levulinic acid hydrogenation. <i>Green Energy and Environment</i> , 2021 , 6, 567-	·§77	3

759	High susceptibility to adiabatic shear banding and high dynamic strength in tungsten heavy alloys with a high-entropy alloy matrix. <i>Journal of Alloys and Compounds</i> , 2021 , 859, 157796	5.7	1
75 ⁸	Lean duplex TRIP steel: Role of ferrite in the texture development, plastic anisotropy, martensitic transformation kinetics, and stress partitioning. <i>Materialia</i> , 2021 , 15, 100952	3.2	10
757	In-situ high energy X-ray diffraction study of microscopic deformation behavior of martensite variant reorientation in NiTi wire. <i>Applied Materials Today</i> , 2021 , 22, 100904	6.6	3
756	Solid-solid phase transition via the liquid in a Pd43Cu27Ni10P20 bulk metallic glass under conventional conditions. <i>Journal of Alloys and Compounds</i> , 2021 , 859, 157802	5.7	3
755	Structural origin of size effect on piezoelectric performance of Pb(Zr,Ti)O3. <i>Ceramics International</i> , 2021 , 47, 5256-5264	5.1	4
754	Enhanced negative thermal expansion of boron-doped Fe43Mn28Ga28.97B0.03 alloy. <i>Journal of Alloys and Compounds</i> , 2021 , 857, 157572	5.7	2
753	Enhanced superelasticity of nanocrystalline NiTi/NiTiNbFe laminar composite. <i>Journal of Alloys and Compounds</i> , 2021 , 853, 157309	5.7	4
75²	Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 12818-12829	13	5
751	Boosted piezoelectricity with excellent thermal stability in tetragonal NaNbO3-based ceramics. Journal of Materials Chemistry A, 2021 , 9, 2367-2374	13	3
75°	External-Field-Induced Phase Transformation and Associated Properties in a Ni50Mn34Fe3In13 Metamagnetic Shape Memory Wire. <i>Metals</i> , 2021 , 11, 309	2.3	2
749	Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. <i>Nature Energy</i> , 2021 , 6, 277-286	62.3	64
748	Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts. <i>Nature Communications</i> , 2021 , 12, 859	17.4	43
747	A combinatory ferroelectric compound bridging simple ABO and A-site-ordered quadruple perovskite. <i>Nature Communications</i> , 2021 , 12, 747	17.4	9
746	Temperature-Induced Structural Changes in the Liquid GaInSn Eutectic Alloy. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 7413-7420	3.8	4
745	Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. <i>Nano Energy</i> , 2021 , 85, 105878	17.1	43
744	Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. <i>Science</i> , 2021 , 373, 912-918	33.3	60
743	3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material. <i>ACS Applied Materials & Deformation Design of Constituent Material Material Materials & Deformation Design of Constituent Material Materials & Deformation Design of Constituent Material Ma</i>	9924	3
742	Synchrotron x-ray diffraction and crystal plasticity modeling study of martensitic transformation, texture development, and stress partitioning in deep-drawn TRIP steels. <i>Materialia</i> , 2021 , 18, 101162	3.2	2

(2020-2021)

741	Revealing causes of macroscale heterogeneity in lithium ion pouch cells via synchrotron X-ray diffraction. <i>Journal of Power Sources</i> , 2021 , 507, 230253	8.9	8
740	Electrolytes Polymerization-Induced Cathode-Electrolyte-Interphase for High Voltage Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101956	21.8	5
739	Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy. <i>Acta Materialia</i> , 2021 , 216, 117121	8.4	5
738	Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. <i>Nature Communications</i> , 2021 , 12, 5370	17.4	10
737	Quantitative evaluation of thixotropy-governed microfabric evolution in soft clays. <i>Applied Clay Science</i> , 2021 , 210, 106157	5.2	3
736	Step-wise R phase transformation rendering high-stability two-way shape memory effect of a NiTiFe-Nb nanowire composite. <i>Acta Materialia</i> , 2021 , 219, 117258	8.4	2
735	Large piezoelectricity and potentially activated polarization reorientation around relaxor MPB in complex perovskite. <i>Journal of the European Ceramic Society</i> , 2021 , 42, 112-112	6	О
734	Structural origin for the high piezoelectric performance of (Na0.5Bi0.5)TiO3-BaTiO3-BiAlO3 lead-free ceramics. <i>Acta Materialia</i> , 2021 , 218, 117202	8.4	3
733	Solidification texture, variant selection, and phase fraction in a spot-melt electron-beam powder bed fusion processed Ti-6Al-4V. <i>Additive Manufacturing</i> , 2021 , 46, 102136	6.1	1
73 ²	In-built ultraconformal interphases enable high-safety practical lithium batteries. <i>Energy Storage Materials</i> , 2021 , 43, 248-257	19.4	10
731	In situ determination of the interplay of the structure and domain under a subcoercive field in BiScO3PbTiO3. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 4415-4422	6.8	
730	Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion Batteries. <i>ACS Energy Letters</i> , 2021 , 6, 547-556	20.1	17
729	Temperature-dependence of superelastic stress in nanocrystalline NiTi with complete transformation capability. <i>Intermetallics</i> , 2020 , 127, 106970	3.5	4
728	Probing the Thermal-Driven Structural and Chemical Degradation of Ni-Rich Layered Cathodes by Co/Mn Exchange. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19745-19753	16.4	56
727	In-situ synchrotron high energy X-ray diffraction study of micro-mechanical behaviour of R phase reorientation in nanocrystalline NiTi alloy. <i>Acta Materialia</i> , 2020 , 194, 565-576	8.4	13
726	Tuning the Kinetics of Zinc-Ion Insertion/Extraction in V O by In Situ Polyaniline Intercalation Enables Improved Aqueous Zinc-Ion Storage Performance. <i>Advanced Materials</i> , 2020 , 32, e2001113	24	158
725	Regulating the Hidden Solvation-Ion-Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2000901	21.8	39
724	Formation of a Three-Phase Spiral Structure Due to Competitive Growth of a Peritectic Phase with a Metastable Eutectic. <i>Jom</i> , 2020 , 72, 2965-2973	2.1	3

723	Cryogenic mechanical behaviors of CrMnFeCoNi high-entropy alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 789, 139579	5.3	13
722	Observation of High-Frequency Transverse Phonons in Metallic Glasses. <i>Physical Review Letters</i> , 2020 , 124, 225902	7.4	6
721	Exploiting ultra-large linear elasticity over a wide temperature range in nanocrystalline NiTi alloy. Journal of Materials Science and Technology, 2020 , 57, 197-203	9.1	3
720	Magnetocaloric effect in the vicinity of the magnetic phase transition in NdCo2⊠Fex compounds. <i>Physical Review B</i> , 2020 , 101,	3.3	6
719	Local structure study on magnetostrictive material Tb1\(\mathbb{B}\)DyxFe2. <i>Journal of Applied Physics</i> , 2020 , 127, 235102	2.5	2
718	Revealing the Structural Evolution and Phase Transformation of O3-Type NaNi1/3Fe1/3Mn1/3O2 Cathode Material on Sintering and Cycling Processes. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6107-6114	6.1	3
717	Probing solid-state reaction through microstrain: A case study on synthesis of LiCoO2. <i>Journal of Power Sources</i> , 2020 , 469, 228422	8.9	4
716	Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. <i>Nature Materials</i> , 2020 , 19, 712-718	27	39
715	A strategy to achieve high-strength WNiFe composite-like alloys with low W content by laser melting deposition. <i>Materials and Design</i> , 2020 , 190, 108554	8.1	12
714	Genesis of the periodic lattice distortions in the charge density wave state of 2HIIaSe2. <i>Physical Review B</i> , 2020 , 101,	3.3	3
713	Grain size and structure distortion characterization of EMgAgSb thermoelectric material by powder diffraction. <i>Chinese Physics B</i> , 2020 , 29, 106101	1.2	1
712	Oxygen Inhomogeneity and Reversibility in Single Crystal LaNiO3\(\textit{ICrystals}\), 2020 , 10, 557	2.3	4
711	Consolidating Lithiothermic-Ready Transition Metals for Li S-Based Cathodes. <i>Advanced Materials</i> , 2020 , 32, e2002403	24	34
710	Understanding the Reactivity of a Thin Li1.5Al0.5Ge1.5(PO4)3 Solid-State Electrolyte toward Metallic Lithium Anode. <i>Advanced Energy Materials</i> , 2020 , 10, 2001497	21.8	25
709	Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. <i>Nano Energy</i> , 2020 , 71, 104643	17.1	36
708	A chiral switchable photovoltaic ferroelectric 1D perovskite. <i>Science Advances</i> , 2020 , 6, eaay4213	14.3	60
707	Ultralow-Strain Zn-Substituted Layered Oxide Cathode with Suppressed P2D2 Transition for Stable Sodium Ion Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 1910327	15.6	54
706	Ultralow thermal conductivity from transverse acoustic phonon suppression in distorted crystalline HMgAgSb. <i>Nature Communications</i> , 2020 , 11, 942	17.4	26

(2020-2020)

705	Transforming Thermal Expansion from Positive to Negative: The Case of Cubic Magnetic Compounds of (Zr,Nb)Fe. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1954-1961	6.4	9
704	In-situ investigation via high energy X-ray diffraction of stress-induced(0002)⊕(110)□ transformation in a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 779, 139154	5.3	1
703	Boosting the Oxygen Reduction Performance via Tuning the Synergy between Metal Core and Oxide Shell of Metal Drganic Frameworks-Derived Co@CoOx. <i>ChemElectroChem</i> , 2020 , 7, 1590-1597	4.3	13
702	Surface Integrity and Oxidation of a Powder Metallurgy Ni-Based Superalloy Treated by Laser Shock Peening. <i>Jom</i> , 2020 , 72, 1803-1810	2.1	3
701	Two-way tuning of structural order in metallic glasses. <i>Nature Communications</i> , 2020 , 11, 314	17.4	17
700	Oxygen octahedral tilt ordering in (Na1/2Bi1/2)TiO3 ferroelectric thin films. <i>Applied Physics Letters</i> , 2020 , 116, 022902	3.4	О
699	The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability. <i>Applied Materials Today</i> , 2020 , 19, 100547	6.6	25
698	Negative thermal expansion and the role of hybridization in perovskite-type PbTiO3-Bi(Cu0.5Ti0.5)O3. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 1190-1195	6.8	7
697	Antisymmetric linear magnetoresistance and the planar Hall effect. <i>Nature Communications</i> , 2020 , 11, 216	17.4	3
696	Effect of Al substitution on the magnetocaloric properties of Ni-Co-Mn-Sn multifunctional alloys. <i>Intermetallics</i> , 2020 , 119, 106706	3.5	3
695	Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire. Journal of Materials Science and Technology, 2020 , 45, 44-48	9.1	8
694	Strong Negative Thermal Expansion in a Low-Cost and Facile Oxide of CuPO. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3088-3093	16.4	27
693	A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3333-3343	13	20
692	Magnetic transitions and magnetocaloric effect of Gd4Nd1Si2Ge2. <i>Journal of Alloys and Compounds</i> , 2020 , 826, 154117	5.7	4
691	A Simple Halogen-Free Magnesium Electrolyte for Reversible Magnesium Deposition through Cosolvent Assistance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 10252-10260	9.5	12
690	Anharmonic lattice dynamics and superionic transition in AgCrSe. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 3930-3937	11.5	36
689	In Situ High-Energy X-Ray Diffraction Studies of Melting, Solidification and Solid-State Transformation of Ni3Sn. <i>MRS Advances</i> , 2020 , 5, 1529-1535	0.7	3
688	Fundamental Insights from a Single-Crystal Sodium Iridate Battery. <i>Advanced Energy Materials</i> , 2020 , 10, 1903128	21.8	7

687	Synergy of Ion Doping and Spiral Array Architecture on Ti2Nb10O29: A New Way to Achieve High-Power Electrodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2002665	15.6	24
686	An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites. <i>Materials Horizons</i> , 2020 , 7, 1912-1918	14.4	16
685	Achieving 5.9% elastic strain in kilograms of metallic glasses: Nanoscopic strain engineering goes macro. <i>Materials Today</i> , 2020 , 37, 18-26	21.8	12
684	A practical phosphorus-based anode material for high-energy lithium-ion batteries. <i>Nano Energy</i> , 2020 , 74, 104849	17.1	32
683	Phase transformation and mechanical properties of Ti-(10B0)ZrBMoISn alloys. <i>Materials Science</i> & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139172	5.3	3
682	Linking constituent phase properties to ductility and edge stretchability of two DP 980 steels. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139176	5.3	7
681	High oxygen pressure floating zone growth and crystal structure of the metallic nickelates R4Ni3O10 (R=La,Pr). <i>Physical Review Materials</i> , 2020 , 4,	3.2	10
68o	Synthesis and characterization of bulk Nd Sr NiO and Nd Sr NiO. <i>Physical Review Materials</i> , 2020 , 4,	3.2	47
679	Hybrid Nanostructured Ni(OH)2/NiO for High-Capacity Lithium-Ion Battery Anodes. <i>Journal of Electrochemical Energy Conversion and Storage</i> , 2020 , 17,	2	2
678	Phase Evolution and Amorphous Stability upon Solid-State Reaction in Superlattice-Like Geßb¶e Combinatorial Thin Films. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 3880-3888	4	1
677	APS: High-Energy X-rays Expediting Applied and Fundamental Research. <i>Synchrotron Radiation News</i> , 2020 , 33, 44-50	0.6	1
676	Investigation of synchrotron X-ray induced oxidation of Agtu thin-film. <i>Materials Letters</i> , 2020 , 272, 127843	3.3	4
675	Influence of defect characteristics on tensile deformation of an additively manufactured stainless steel: Evolutions of texture and intergranular strain. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 791, 139637</i>	5.3	10
674	Magnetocaloric effect and critical exponent analysis around magnetic phase transition in NdCo2 compound. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 345003	3	5
673	Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy. <i>Acta Materialia</i> , 2020 , 183, 11-23	8.4	15
672	Chiral Restructuring of Peptide Enantiomers on Gold Nanomaterials. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 2612-2620	5.5	6
671	"Lattice Strain Matching"-Enabled Nanocomposite Design to Harness the Exceptional Mechanical Properties of Nanomaterials in Bulk Forms. <i>Advanced Materials</i> , 2020 , 32, e1904387	24	5
670	Origin of Electronic Modification of Platinum in a Pt3V Alloy and Its Consequences for Propane Dehydrogenation Catalysis. <i>ACS Applied Energy Materials</i> , 2020 , 3, 1410-1422	6.1	23

(2020-2020)

669	Tuning magnetostriction of Feta alloys via stress engineering. <i>Journal of Alloys and Compounds</i> , 2020 , 822, 153687	5.7	10
668	Effect of initial microstructure on the micromechanical behavior of Ti-55531 titanium alloy investigated by in-situ high-energy X-ray diffraction. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 772, 138806	5.3	14
667	Exotic hysteresis of ferrimagnetic transition in Laves compound TbCo2. <i>Materials Research Letters</i> , 2020 , 8, 97-102	7.4	3
666	In situ and operando investigation of the dynamic morphological and phase changes of a selenium-doped germanium electrode during (de)lithiation processes. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 750-759	13	17
665	Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes. <i>ACS Energy Letters</i> , 2020 , 5, 224-231	20.1	27
664	Electric-field-induced structure and domain texture evolution in PbZrO3-based antiferroelectric by in-situ high-energy synchrotron X-ray diffraction. <i>Acta Materialia</i> , 2020 , 184, 41-49	8.4	17
663	Crystal structures and phase relationships in magnetostrictive Tb Dy Co system. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 135802	1.8	2
662	Formation of omega phase induced by laser shock peening in Ti-17 alloy. <i>Materials Characterization</i> , 2020 , 159, 110017	3.9	6
661	In-situ observation of an unusual phase transformation pathway with Guinier-Preston zone-like precipitates in Zr-based bulk metallic glasses. <i>Journal of Alloys and Compounds</i> , 2020 , 819, 153049	5.7	5
660	Large room-temperature elastocaloric effect in a bulk polycrystalline Ni-Ti-Cu-Co alloy with low isothermal stress hysteresis. <i>Applied Materials Today</i> , 2020 , 21, 100844	6.6	3
659	Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass. <i>Acta Materialia</i> , 2020 , 200, 42-55	8.4	14
658	High performance Nb/TiNi nanocomposites produced by packaged accumulative roll bonding. <i>Composites Part B: Engineering</i> , 2020 , 202, 108403	10	8
657	Local spring effect in titanium-based layered oxides. <i>Energy and Environmental Science</i> , 2020 , 13, 4371-4	43 8 .0 ₄	2
656	Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. <i>Nano Energy</i> , 2020 , 78, 105101	17.1	22
655	In situ investigation of the deformation behaviors of Fe20Co30Cr25Ni25 and Fe20Co30Cr30Ni20 high entropy alloys by high-energy X-ray diffraction. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 795, 139936	5.3	4
654	Design of a VIIINi alloy with superelastic nano-precipitates. <i>Acta Materialia</i> , 2020 , 196, 710-722	8.4	2
653	Superior strength-ductility synergy by hetero-structuring high manganese steel. <i>Materials Research Letters</i> , 2020 , 8, 417-423	7.4	10
652	Crystal Structure and Atomic Vacancy Optimized Thermoelectric Properties in Gadolinium Selenides. <i>Chemistry of Materials</i> , 2020 , 32, 10130-10139	9.6	20

		Yano	i Ren
651	Ultrafast formation of a transient two-dimensional diamondlike structure in twisted bilayer graphene. <i>Physical Review B</i> , 2020 , 102,	3.3	5
650	Evolution of Microstructure, Residual Stress, and Tensile Properties of Additively Manufactured Stainless Steel Under Heat Treatments. <i>Jom</i> , 2020 , 72, 4167-4177	2.1	7
649	Large electromechanical strain and unconventional domain switching near phase convergence in a Pb-free ferroelectric. <i>Communications Physics</i> , 2020 , 3,	5.4	5
648	Structural Distortion Induced by Manganese Activation in a Lithium-Rich Layered Cathode. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14966-14973	16.4	35
647	Architecting a Stable High-Energy Aqueous Al-Ion Battery. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15295-15304	16.4	94
646	In situ and ex situ studies of anomalous eutectic formation in undercooled Nißn alloys. <i>Acta Materialia</i> , 2020 , 197, 198-211	8.4	4
645	Cyclic deformation and lattice strain distribution of high Nb containing TiAl alloy. <i>Materials Science and Technology</i> , 2020 , 36, 1507-1515	1.5	1
644	Lattice-Distortion-Enhanced Yield Strength in a Refractory High-Entropy Alloy. <i>Advanced Materials</i> , 2020 , 32, e2004029	24	40
643	A novel stress-induced martensitic transformation in a single-phase refractory high-entropy alloy. <i>Scripta Materialia</i> , 2020 , 189, 129-134	5.6	10
642	Relationship among the Crystal Structure, Texture, and Macroscopic Properties of Tetragonal (Pb,La)(Zr,Ti)O Ferroelectrics Investigated by In Situ High-Energy Synchrotron Diffraction. <i>Inorganic Chemistry</i> , 2020 , 59, 13632-13638	5.1	3
641	A self-healing liquid metal anode with PEO-Based polymer electrolytes for rechargeable lithium batteries. <i>Applied Materials Today</i> , 2020 , 21, 100802	6.6	5
640	TiO2 Nanocrystal-Framed Li2TiSiO5 Platelets for Low-Voltage Lithium Battery Anode. <i>Advanced Functional Materials</i> , 2020 , 30, 2001909	15.6	11
639	Unraveling magneto-structural coupling of Ni2MnGa alloy under the application of stress and magnetic field using in situ polarized neutron diffraction. <i>Applied Physics Letters</i> , 2020 , 117, 081905	3.4	2
638	Reentrant glass transition leading to ultrastable metallic glass. <i>Materials Today</i> , 2020 , 34, 66-77	21.8	21
637	Preparation, Structure, and enhanced thermoelectric properties of Sm-doped BiCuSeO oxyselenide. <i>Materials and Design</i> , 2020 , 185, 108263	8.1	13
636	Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. <i>Chemical Engineering Journal</i> , 2020 , 379, 122418	14.7	18
635	Effect of Ta on Microstructures and Mechanical Properties of NiTi Alloys. <i>Shape Memory and Superelasticity</i> , 2019 , 5, 249-257	2.8	2
634	Evidence for a short-range chemical order of Ge atoms and its critical role in inducing a giant magnetocaloric effect in Gd5Si1.5Ge2.5. <i>Journal of Alloys and Compounds</i> , 2019 , 808, 151751	5.7	5

633	Lithiated Spinel LiCo1⊠AlxO2 as a Stable Zero-Strain Cathode. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6170-6175	6.1	8
632	On the unusual amber coloration of nanoporous sol-gel processed Al-doped silica glass: An experimental study. <i>Scientific Reports</i> , 2019 , 9, 12474	4.9	
631	Hydrogen embrittlement behaviors of additive manufactured maraging steel investigated by in situ high-energy X-ray diffraction. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 766, 138341	5.3	6
630	Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy. <i>Materials Research Letters</i> , 2019 , 7, 482-489	7.4	26
629	An inorganic salt reinforced Zn2+-conducting solid-state electrolyte for ultra-stable Zn metal batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22287-22295	13	38
628	Peierls barrier characteristic and anomalous strain hardening provoked by dynamic-strain-aging strengthening in a body-centered-cubic high-entropy alloy. <i>Materials Research Letters</i> , 2019 , 7, 475-481	7.4	18
627	Development of Fe100-(NiCoMn) magnetostrictive alloys with good mechanical properties. <i>Journal of Alloys and Compounds</i> , 2019 , 810, 151931	5.7	1
626	Engineering medium-range order and polyamorphism in a nanostructured amorphous alloy. <i>Communications Physics</i> , 2019 , 2,	5.4	16
625	A eutectic dual-phase design towards superior mechanical properties of heusler-type ferromagnetic shape memory alloys. <i>Acta Materialia</i> , 2019 , 181, 278-290	8.4	6
624	An advanced high energy-efficiency rechargeable aluminum-selenium battery. <i>Nano Energy</i> , 2019 , 66, 104159	17.1	21
623	Temperature-Dependent Structural Evolution in Au44Ga56 Liquid Eutectic Alloy. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 25209-25219	3.8	6
622	Giant negative thermal expansion at the nanoscale in the multifunctional material Gd5(Si,Ge)4. <i>Physical Review B</i> , 2019 , 100,	3.3	17
621	Large Negative Thermal Expansion Induced by Synergistic Effects of Ferroelectrostriction and Spin Crossover in PbTiO3-Based Perovskites. <i>Chemistry of Materials</i> , 2019 , 31, 1296-1303	9.6	22
620	Identification of Surface Structures in Pt3Cr Intermetallic Nanocatalysts. <i>Chemistry of Materials</i> , 2019 , 31, 1597-1609	9.6	29
619	The Phase Diagram and Exotic Magnetostrictive Behaviors in Spinel Oxide Co(FeAl)O System. <i>Materials</i> , 2019 , 12,	3.5	4
618	Towards an integrated experimental and computational framework for large-scale metal additive manufacturing. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 761, 138057	5.3	14
617	Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti Alloys. <i>Physical Review Letters</i> , 2019 , 122, 255703	7.4	120
616	Scalable mesoporous silicon microparticles composed of interconnected nanoplates for superior lithium storage. <i>Chemical Engineering Journal</i> , 2019 , 375, 121923	14.7	21

		Yano	i Ren
615	In-situ synchrotron high energy X-ray diffraction study of phase transformation of intermetallic Ti3Sn. <i>Materials Letters</i> , 2019 , 252, 161-164	3.3	3
614	Revealing the Atomic Origin of Heterogeneous Li-Ion Diffusion by Probing Na. <i>Advanced Materials</i> , 2019 , 31, e1805889	24	20
613	Enhanced tetragonality and large negative thermal expansion in a new Pb/Bi-based perovskite ferroelectric of (1 k)PbTiO3\Bi(Zn1/2V1/2)O3. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 1990-1995	6.8	5
612	Thermal Expansion and Magnetostriction of Laves-Phase Alloys: Fingerprints of Ferrimagnetic Phase Transitions. <i>Materials</i> , 2019 , 12,	3.5	2
611	Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. <i>Nature</i> , 2019 , 569, 245-250	50.4	378
610	Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. <i>Nature Energy</i> , 2019 , 4, 484-494	62.3	190
609	Identification of a Pt3Co Surface Intermetallic Alloy in Pt©o Propane Dehydrogenation Catalysts. <i>ACS Catalysis</i> , 2019 , 9, 5231-5244	13.1	68
608	Structural behavior of a stuffed derivative of Equartz, Mg0.5AlSiO4, at high temperature: an in situ synchrotron XRD study. <i>Physics and Chemistry of Minerals</i> , 2019 , 46, 717-725	1.6	1
607	Long-Range Antiferromagnetic Order in a Rocksalt High Entropy Oxide. <i>Chemistry of Materials</i> , 2019 , 31, 3705-3711	9.6	66
606	Temperature-dependent compression behavior of an Al0.5CoCrCuFeNi high-entropy alloy. <i>Materialia</i> , 2019 , 5, 100243	3.2	10
605	Local lattice distortion mediated formation of stacking faults in Mg alloys. <i>Acta Materialia</i> , 2019 , 170, 231-239	8.4	23
604	Direct observation of MgO formation at cathode electrolyte interface of a spinel MgCo2O4 cathode upon electrochemical Mg removal and insertion. <i>Journal of Power Sources</i> , 2019 , 424, 68-75	8.9	8
603	Methacrylated gelatin-embedded fabrication of 3D graphene-supported CoO nanoparticles for water splitting. <i>Nanoscale</i> , 2019 , 11, 6866-6875	7.7	11
602	Inorganic-organic hybridization induced uniaxial zero thermal expansion in MCO (M = Ba, Pb). <i>Chemical Communications</i> , 2019 , 55, 4107-4110	5.8	8
601	Negative Thermal Expansion in (Hf,Ti)Fe Induced by the Ferromagnetic and Antiferromagnetic Phase Coexistence. <i>Inorganic Chemistry</i> , 2019 , 58, 5380-5383	5.1	7
600	Entropy modeling on serrated flows in carburized steels. <i>Materials Science & Discourse A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 753, 135-145	5.3	15
599	Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode. <i>Chemistry of Materials</i> , 2019 , 31, 2723-2730	9.6	68
598	Design and thermomechanical properties of a 2 precipitate-strengthened Ni-based superalloy with high entropy [matrix. <i>Journal of Alloys and Compounds</i> , 2019 , 792, 550-560	5.7	21

(2019-2019)

Negative thermal expansion in cubic FeFe(CN) Prussian blue analogues. <i>Dalton Transactions</i> , 2019 , 48, 3658-3663	4.3	20
Structural evolution of low-temperature liquid GaIn eutectic alloy. <i>Journal of Molecular Liquids</i> , 2019 , 293, 111464	6	4
Multiple contributions to electrostrain in high performance PbTiO3 B i(Ni1/2Hf1/2)O3 piezoceramics triggered by phase transformation. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 5277-5284	6	5
Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. <i>Nature Photonics</i> , 2019 , 13, 760-764	33.9	313
Amorphous and crystalline TiO2 nanoparticle negative electrodes for sodium-ion batteries. <i>Electrochimica Acta</i> , 2019 , 321, 134723	6.7	14
Evaluation of the microstructure and property of TiNi SMA prepared using VIM in BaZrO3 crucible. <i>Vacuum</i> , 2019 , 168, 108843	3.7	4
Variation of elastic mechanical properties with texture, porosity, and defect characteristics in laser powder bed fusion 316L stainless steel. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 763, 138032	5.3	26
Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy. <i>Acta Materialia</i> , 2019 , 177, 46-55	8.4	26
Unraveling the Origins of the Unreactive Corelin Conversion Electrodes to Trigger High Sodium-Ion Electrochemistry. <i>ACS Energy Letters</i> , 2019 , 4, 2007-2012	20.1	25
High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3. <i>Crystals</i> , 2019 , 9, 324	2.3	8
Single Crystal Growth of Relaxor Ferroelectric Ba2PrFeNb4O15 by the Optical Floating Zone Method. <i>Crystal Growth and Design</i> , 2019 , 19, 7249-7256	3.5	2
Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. <i>Nature Communications</i> , 2019 , 10, 4721	17.4	91
Powerlaw Feature of Structure in Metallic Glasses. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 27868-27	′8 ₃ 7.84	2
Manipulation of magnetostructural transition and realization of prominent multifunctional magnetoresponsive properties in NiCoMnIn alloys. <i>Physical Review Materials</i> , 2019 , 3,	3.2	5
Magnetic field-induced magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni-Cu-Co-Mn-In microwire. <i>IUCrJ</i> , 2019 , 6, 843-853	4.7	9
Stabilizing the Interface between Sodium Metal Anode and Sulfide-Based Solid-State Electrolyte with an Electron-Blocking Interlayer. <i>ACS Applied Materials & Electron State S</i>	9.5	35
High-throughput investigation of crystal-to-glass transformation of Ti-Ni-Cu ternary alloy. <i>Scientific Reports</i> , 2019 , 9, 19932	4.9	5
Controllable thermal expansion and magnetic structure in Er2(Fe,Co)14B intermetallic compounds. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 3225-3229	6.8	6
	Structural evolution of low-temperature liquid Galn eutectic alloy. <i>Journal of Molecular Liquids</i> , 2019, 293, 111464 Multiple contributions to electrostrain in high performance PbTiO3Bi(Ni1/2HF1/2)O3 piezoceramics triggered by phase transformation. <i>Journal of the European Ceramic Society</i> , 2019, 39, 5277-5284 Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. <i>Nature Photonics</i> , 2019, 13, 760-764 Amorphous and crystalline TiO2 nanoparticle negative electrodes for sodium-ion batteries. <i>Electrochimica Acta</i> , 2019, 321, 134723 Evaluation of the microstructure and property of TiNi SMA prepared using VIM in BaZrO3 crudible. <i>Vacaum</i> , 2019, 168, 108843 Variation of elastic mechanical properties with texture, porosity, and defect characteristics in laser powder bed fusion 316L stainless steel. <i>Materials Science Ramp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019, 763, 138032 Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy. <i>Acta Materialia</i> , 2019, 177, 46-55 Unraveling the Origins of the Direactive Corelin Conversion Electrodes to Trigger High Sodium-ion Electrochemistry. <i>ACS Energy Letters</i> , 2019, 4, 2007-2012 High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3. <i>Crystals</i> , 2019, 9, 324 Single Crystal Growth of Relaxor Ferroelectric Ba2PrFeNb4O15 by the Optical Floating Zone Method. <i>Crystal Growth and Design</i> , 2019, 19, 7249-7256 Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. <i>Nature Communications</i> , 2019, 10, 4721 Powerliaw Feature of Structure in Metallic Glasses. <i>Journal of Physical Chemistry C</i> , 2019, 123, 27868-27 Manipulation of magnetostructural transition and realization of prominent multifunctional magnetoresponsive properties in NiCoMnin alloys. <i>Physical Review Materials</i> , 2019, 3, Magnetic field-induced magnetostructural transition and huge tensile superel	Structural evolution of low-temperature liquid Gain eutectic alloy. <i>Journal of Molecular Liquids</i> , 2019, 293, 111464 Multiple contributions to electrostrain in high performance PbTiO3Bi(Ni1/2HF1/2)O3 piezoceramics triggered by phase transformation. <i>Journal of the European Ceramic Society</i> , 2019, 39, 5277-5284 Efficient blue light-emitting diodes based on quantum-confined bromide perovskite 33-9 Amorphous and crystalline TiO2 nanoparticle negative electrodes for sodium-ion batteries. <i>Electrochimica Acta</i> , 2019, 321, 134723 Evaluation of the microstructure and properties negative electrodes for sodium-ion batteries. <i>Electrochimica Acta</i> , 2019, 321, 134723 Evaluation of elastic mechanical properties with texture, porosity, and defect characteristics in laser powder bed fusion 316L stainless steel. <i>Materials Science 8amp; Engineering A: Structural Materials</i> : 5-3 <i>Properties, Microstructure and Processing</i> , 2019, 763, 138032 Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy. <i>Acta Materialia</i> , 2019, 177, 46-55 High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3. <i>Crystals</i> , 2019, 9, 324 23 Single Crystal Growth of Relaxor Ferroelectric Ba2P:FeNb4O15 by the Optical Floating Zone Method. <i>Crystal Growth and Design</i> , 2019, 19, 7249-7256 Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. <i>Nature Communications</i> , 2019, 10, 4721 Powerflaw Feature of Structure in Metallic Glasses. <i>Journal of Physical Chemistry C</i> , 2019, 123, 27868-278/M Manipulation of magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni-Cu-Co-Mn-In microwire. <i>IUCrJ</i> , 2019, 6, 843-853 High-throughput investigation of crystal-to-glass transformation of Ti-Ni-Cu ternary alloy. <i>Scientific Reports</i> , 2019, 9, 19932 Controllable thermal expansion and magnetic structure in Er2(Fe,Co)14B intermetallic compounds.

Materials: Properties, Microstructure and Processing, 2019, 743, 764-772

toughness and low thermal diffusivity. Applied Physics Letters, 2019, 114, 011905

Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high

28

3.4

(2018-2019)

561	Effects of composition and crystallographic ordering on the ferromagnetic transition in Ni Co Mn In magnetic shape memory lalloys. <i>Acta Materialia</i> , 2019 , 166, 630-637	8.4	4
560	A brittle fracture mechanism in thermally aged duplex stainless steels revealed by in situ high-energy X-ray diffraction. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 739, 264-271	5.3	8
559	Achieving ultra-high bearing strength of tungsten nanoribbons in a transforming metal matrix. <i>Journal of Alloys and Compounds</i> , 2019 , 781, 1-7	5.7	9
558	Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. <i>Materials and Design</i> , 2019 , 164, 107534	8.1	113
557	Mechanical activation enhanced solid-state synthesis of NaCrO2 cathode material. <i>Materialia</i> , 2019 , 5, 100172	3.2	5
556	Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. <i>Journal of Power Sources</i> , 2019 , 412, 336-343	8.9	57
555	Mechanism-based constitutive modeling of ZEK100 magnesium alloy with crystal plasticity and in-situ HEXRD experiment. <i>International Journal of Plasticity</i> , 2019 , 113, 35-51	7.6	23
554	Slate IA new record for crystal preferred orientation. <i>Journal of Structural Geology</i> , 2019 , 125, 319-324	3	10
553	Structural Correlation to Piezoelectric and Ferroelectric Mechanisms in Rhombohedral Pb(Zr,Ti)O Ceramics by in-Situ Synchrotron Diffraction. <i>Inorganic Chemistry</i> , 2018 , 57, 3002-3007	5.1	12
552	In-situ synchrotron X-ray diffraction study of dual-step strain variation in laser shock peened metallic glasses. <i>Scripta Materialia</i> , 2018 , 149, 112-116	5.6	3
551	Insight into Ca-Substitution Effects on O3-Type NaNi Fe Mn O Cathode Materials for Sodium-Ion Batteries Application. <i>Small</i> , 2018 , 14, e1704523	11	56
550	A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries. <i>CheM</i> , 2018 , 4, 1167-1180	16.2	92
549	Effect of Componential Proportion in Bimetallic Electrocatalysts on the Aprotic Lithium-Oxygen Battery Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1703230	21.8	21
548	Lders-like martensitic transformation in a Cu/carbon-steel nanocomposite: An in situ synchrotron study. <i>Journal of Alloys and Compounds</i> , 2018 , 741, 693-699	5.7	2
547	Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. <i>Journal of Power Sources</i> , 2018 , 381, 156-163	8.9	60
546	Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2879-2883	16.4	106
545	Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 2929-2933	3.6	25
544	A New Insight into Cross-Sensitivity to Humidity of SnO Sensor. <i>Small</i> , 2018 , 14, e1703974	11	28

543	Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary. <i>Physical Review Letters</i> , 2018 , 120, 055501	7.4	47
542	Rapid Construction of Fe-Co-Ni Composition-Phase Map by Combinatorial Materials Chip Approach. <i>ACS Combinatorial Science</i> , 2018 , 20, 127-131	3.9	21
541	Influence of Co-doping on the Crystal Structure, Magnetocaloric Properties and Elastic Moduli of the La(Fe, Si)13 Compound. <i>Minerals, Metals and Materials Series</i> , 2018 , 181-190	0.3	1
540	Microstructure stability and micro-mechanical behavior of as-cast gamma-TiAl alloy during high-temperature low cycle fatigue. <i>Acta Materialia</i> , 2018 , 145, 504-515	8.4	31
539	Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe. <i>Inorganic Chemistry</i> , 2018 , 57, 689-694	5.1	15
538	The in-depth residual strain heterogeneities due to an indentation and a laser shock peening for Ti-6Al-4V titanium alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 714, 140-145	5.3	16
537	Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy. <i>Acta Materialia</i> , 2018 , 146, 142-151	8.4	49
536	Capacity Fading Mechanism of the Commercial 18650 LiFePO-Based Lithium-Ion Batteries: An in Situ Time-Resolved High-Energy Synchrotron XRD Study. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 4622-4629	9.5	29
535	Phase stability and transformation in a light-weight high-entropy alloy. <i>Acta Materialia</i> , 2018 , 146, 280	-2934	76
534	Momentum-resolved observations of the phonon instability driving geometric improper ferroelectricity in yttrium manganite. <i>Nature Communications</i> , 2018 , 9, 15	17.4	18
533	Modifying the Surface of a High-Voltage Lithium-Ion Cathode. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2254-2260	6.1	31
532	Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite. <i>Nano Letters</i> , 2018 , 18, 2976-2983	11.5	12
531	Spin reorientation and magnetoelastic properties of ferromagnetic Tb1\(\mathbb{U}\)NdxCo2 systems with a morphotropic phase boundary. <i>Physical Review B</i> , 2018 , 97,	3.3	8
530	Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy. <i>Acta Materialia</i> , 2018 , 151, 41-55	8.4	7°
529	Large spontaneous polarization in polar perovskites of PbTiO3 B i(Zn1/2Ti1/2)O3. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1277-1281	6.8	7
528	Localized Symmetry Breaking for Tuning Thermal Expansion in ScF Nanoscale Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4477-4480	16.4	26
527	Structure and reactivity of PtIh intermetallic alloy nanoparticles: Highly selective catalysts for ethane dehydrogenation. <i>Catalysis Today</i> , 2018 , 299, 146-153	5.3	83
526	Metastable solidification of hypereutectic Co2Si-CoSi composition: Microstructural studies and in-situ observations. <i>Acta Materialia</i> , 2018 , 142, 172-180	8.4	17

525	Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols. <i>Advanced Energy Materials</i> , 2018 , 8, 1701726	21.8	15
524	Temperature effects on the serrated behavior of an Al0.5CoCrCuFeNi high-entropy alloy. <i>Materials Chemistry and Physics</i> , 2018 , 210, 20-28	4.4	45
523	Strongly-coupled quantum critical point in an all-in-all-out antiferromagnet. <i>Nature Communications</i> , 2018 , 9, 2953	17.4	9
522	Structural Evolution of Molybdenum Disulfide Prepared by Atomic Layer Deposition for Realization of Large Scale Films in Microelectronic Applications. <i>ACS Applied Nano Materials</i> , 2018 , 1, 4028-4037	5.6	21
521	Temperature-dependent plastic deformation mechanisms of a Cu/steel transforming nanolamellar composite. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 734, 77-84	5.3	3
520	Effect of Annealing on the Structure and Magnetic Properties of CoMnSi. <i>IEEE Transactions on Magnetics</i> , 2018 , 54, 1-5	2	3
519	Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys. <i>Applied Physics Letters</i> , 2018 , 113, 041903	3.4	14
518	Conductive nanolamellar Cu/martensite wire with high strength. <i>Materials Letters</i> , 2018 , 229, 344-347	3.3	1
517	Probing Thermal and Chemical Stability of NaxNi1/3Fe1/3Mn1/3O2 Cathode Material toward Safe Sodium-Ion Batteries. <i>Chemistry of Materials</i> , 2018 , 30, 4909-4918	9.6	36
516	Structure Determination of a Surface Tetragonal Pt1Sb1 Phase on Pt Nanoparticles. <i>Chemistry of Materials</i> , 2018 , 30, 4503-4507	9.6	14
515	Capacity Fading Mechanism and Improvement of Cycling Stability of the SiO Anode for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A2102-A2107	3.9	16
514	Synchrotron X-Ray and Neutron Diffraction, Total Scattering, and Small-Angle Scattering Techniques for Rechargeable Battery Research. <i>Small Methods</i> , 2018 , 2, 1800064	12.8	43
513	Suppression of crystallization in a Ca-based bulk metallic glass by compression. <i>Journal of Alloys and Compounds</i> , 2018 , 765, 595-600	5.7	1
512	Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the Etransition in Sulfur. <i>Scientific Reports</i> , 2018 , 8, 4558	4.9	9
511	Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN) Prussian Blue Analogues. <i>Inorganic Chemistry</i> , 2018 , 57, 10918-10924	5.1	19
510	Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries. <i>ACS Applied Materials & Discrete Section</i> , 10, 29638-29646	9.5	48
509	Support-induced morphology and content tailored NiCo2O4 nanostructures on temperature-dependent carbon nanofibers with enhanced pseudocapacitive performance. <i>Electrochimica Acta</i> , 2018 , 286, 1-13	6.7	14
508	Twin Crystal Induced near Zero Thermal Expansion in SnO Nanowires. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7403-7406	16.4	21

507	Intergranular stress study of TC11 titanium alloy after laser shock peening by synchrotron-based high-energy X-ray diffraction. <i>AIP Advances</i> , 2018 , 8, 055126	1.5	7
506	Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. <i>Nature Energy</i> , 2018 , 3, 936-943	62.3	312
505	Giant thermally-enhanced electrostriction and polar surface phase in La2Mo2O9 oxygen ion conductors. <i>Physical Review Materials</i> , 2018 , 2,	3.2	6
504	Controlled vapor crystal growth of Na4Ir3O8: A three-dimensional quantum spin liquid candidate. <i>Physical Review Materials</i> , 2018 , 2,	3.2	2
503	Synergy between phase transformation and domain switching in two morphotropic phase boundary ferroelectrics. <i>Physical Review Materials</i> , 2018 , 2,	3.2	5
502	Cryogenic temperature toughening and strengthening due to gradient phase structure. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 712, 358-364	5.3	7
501	Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid. <i>Nano Letters</i> , 2018 , 18, 336-346	11.5	37
500	Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2018 , 711, 611-623	5.3	26
499	Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques. <i>Nano Energy</i> , 2018 , 43, 184-191	17.1	46
498	Crystal plasticity based constitutive modeling of ZEK100 magnesium alloy combined with in-situ HEXRD experiments. <i>Journal of Physics: Conference Series</i> , 2018 , 1063, 012031	0.3	
497	Transition from antiferromagnetic ground state to robust ferrimagnetic order with Curie temperatures above 420 K in manganese-based antiperovskite-type structures. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13336-13344	7.1	4
496	Pressure-induced charge density wave phase in Ag2IIe. <i>Physical Review B</i> , 2018 , 98,	3.3	2
495	Electrochemical Performance of NaFeFe(CN)6Prepared by Solid Reaction for Sodium Ion Batteries. Journal of the Electrochemical Society, 2018 , 165, A3910-A3917	3.9	16
494	Charge transfer-tuned magnetism in Nd-substituted Gd5Si4. <i>AIP Advances</i> , 2018 , 8, 125219	1.5	5
493	Charge transfer drives anomalous phase transition in ceria. <i>Nature Communications</i> , 2018 , 9, 5063	17.4	30
492	Modifying High-Voltage Olivine-Type LiMnPO4 Cathode via Mg Substitution in High-Orientation Crystal. <i>ACS Applied Energy Materials</i> , 2018 , 1, 5928-5935	6.1	15
491	High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. <i>Nature Communications</i> , 2018 , 9, 4063	17.4	218
490	BCC-Phased PdCu Alloy as a Highly Active Electrocatalyst for Hydrogen Oxidation in Alkaline Electrolytes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 16580-16588	16.4	74

489	Understanding Thermodynamic and Kinetic Contributions in Expanding the Stability Window of Aqueous Electrolytes. <i>CheM</i> , 2018 , 4, 2872-2882	16.2	119
488	Changes in Catalytic and Adsorptive Properties of 2 nm PtMn Nanoparticles by Subsurface Atoms. Journal of the American Chemical Society, 2018 , 140, 14870-14877	16.4	78
487	Temperature-Sensitive Structure Evolution of Lithium-Manganese-Rich Layered Oxides for Lithium-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15279-15289	16.4	108
486	Local Chemical Strain in PtFe Alloy Nanoparticles. <i>Inorganic Chemistry</i> , 2018 , 57, 10494-10497	5.1	5
485	On Disrupting the Na+-Ion/Vacancy Ordering in P2-Type SodiumManganeseNickel Oxide Cathodes for Na+-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 23251-23260	3.8	28
484	Enhanced high-temperature tensile property by gradient twin structure of duplex high-Nb-containing TiAl alloy. <i>Acta Materialia</i> , 2018 , 161, 1-11	8.4	35
483	In-situ investigation of pressure effect on structural evolution and conductivity of Na3SbS4 superionic conductor. <i>Journal of Power Sources</i> , 2018 , 401, 111-116	8.9	13
482	Polarization Mechanisms in P(VDF-TrFE) Ferroelectric Thin Films. <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1800340	2.5	4
481	Structural investigations of Fe-Ga alloys by high-energy x-ray diffraction. <i>Journal of Alloys and Compounds</i> , 2018 , 763, 223-227	5.7	14
480	In situ high-energy X-ray diffraction investigation of the micromechanical behavior of Fe-0.1C-10Mn-0/2Al steel at room and elevated temperatures. <i>Materials Science & Discourse amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2018 , 729, 444-451	5.3	7
479	Appearance of superconductivity at the vacancy order-disorder boundary in KxFe2JJSe2. <i>Physical Review B</i> , 2018 , 97,	3.3	5
478	In situ synchrotron X-ray diffraction investigations of the physical mechanism of ultra-low strain hardening in Ti-30Zr-10Nb alloy. <i>Acta Materialia</i> , 2018 , 154, 45-55	8.4	32
477	Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2018 , 49, 2573-257	7.3	4
476	Simultaneous Operando Measurements of the Local Temperature, State of Charge, and Strain inside a Commercial Lithium-Ion Battery Pouch Cell. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A1578-A1585	3.9	23
475	In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2018 , 49, 2583-2596	2.3	22
474	Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. <i>Nature Communications</i> , 2018 , 9, 2499	17.4	60
473	Effects of coating spherical iron oxide nanoparticles. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2017 , 1861, 3621-3626	4	5
472	Tailoring Negative Thermal Expansion in Ferroelectric Sn2P2S6 by Lone-Pair Cations. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 1832-1837	3.8	4

471	Insights into the Distinct Lithiation/Sodiation of Porous Cobalt Oxide by in Operando Synchrotron X-ray Techniques and Ab Initio Molecular Dynamics Simulations. <i>Nano Letters</i> , 2017 , 17, 953-962	11.5	21
470	Rulle alloy mediated Fe2O3 particles on mesoporous carbon nanofibers as electrode materials with superior capacitive performance. <i>RSC Advances</i> , 2017 , 7, 6818-6826	3.7	5
469	Temperature-dependent structure evolution in liquid gallium. <i>Acta Materialia</i> , 2017 , 128, 304-312	8.4	44
468	Zero Thermal Expansion and Semiconducting Properties in PbTiO-Bi(Co, Ti)O Ferroelectric Solid Solutions. <i>Inorganic Chemistry</i> , 2017 , 56, 2589-2595	5.1	11
467	Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy. <i>Acta Materialia</i> , 2017 , 129, 170-182	8.4	79
466	Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al 0.3 CoCrFeNi high entropy alloy. <i>Materials and Design</i> , 2017 , 121, 254-260	8.1	195
465	Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. <i>Nano Energy</i> , 2017 , 34, 215-223	17.1	69
464	Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials. <i>ACS Applied Materials & ACS Applied &</i>	9.5	14
463	Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries. <i>Nature Communications</i> , 2017 , 8, 14308	17.4	88
462	Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction. <i>Acta Materialia</i> , 2017 , 128, 12-2	18.4	72
461	Structural evolution and dynamical properties of Al2Ag and Al2Cu liquids studied by experiments and ab initio molecular dynamics simulations. <i>Journal of Non-Crystalline Solids</i> , 2017 , 459, 160-168	3.9	8
460	Parasitic Reactions in Nanosized Silicon Anodes for Lithium-Ion Batteries. <i>Nano Letters</i> , 2017 , 17, 1512-	1519	93
459	Insights on the origin of the TbGe magnetocaloric effect. <i>Physica B: Condensed Matter</i> , 2017 , 513, 72-76	2.8	
458	Tunable thermal expansion in framework materials through redox intercalation. <i>Nature Communications</i> , 2017 , 8, 14441	17.4	76
457	A high-voltage rechargeable magnesium-sodium hybrid battery. <i>Nano Energy</i> , 2017 , 34, 188-194	17.1	61
456	High-Pressure Floating-Zone Growth of Perovskite Nickelate LaNiO3 Single Crystals. <i>Crystal Growth and Design</i> , 2017 , 17, 2730-2735	3.5	41
455	Plasticity performance of Al0.5 CoCrCuFeNi high-entropy alloys under nanoindentation. <i>Journal of Iron and Steel Research International</i> , 2017 , 24, 390-396	1.2	6
454	Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. <i>Nano Energy</i> , 2017 , 36, 197-205	17.1	40

453	Individual phase constitutive properties of a TRIP-assisted QP980 steel from a combined synchrotron X-ray diffraction and crystal plasticity approach. <i>Acta Materialia</i> , 2017 , 132, 230-244	8.4	54
452	Multi-Component Fe N i Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. <i>ACS Catalysis</i> , 2017 , 7, 365-379	13.1	109
451	Emergent Low-Symmetry Phases and Large Property Enhancements in Ferroelectric KNbO Bulk Crystals. <i>Advanced Materials</i> , 2017 , 29, 1700530	24	21
450	High-Performance High-Loading LithiumBulfur Batteries by Low Temperature Atomic Layer Deposition of Aluminum Oxide on Nanophase S Cathodes. <i>Advanced Materials Interfaces</i> , 2017 , 4, 17000	0 9 6	19
449	Ferro-Lattice-Distortions and Charge Fluctuations in Superconducting LaO1\(\mathbb{U}\)FxBiS2. <i>Journal of the Physical Society of Japan</i> , 2017 , 86, 054701	1.5	13
448	Thermal and magnetic hysteresis associated with martensitic and magnetic phase transformations in NiMnInCo Heusler alloy. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 442, 25-35	2.8	5
447	Structural Evidence for Strong Coupling between Polarization Rotation and Lattice Strain in Monoclinic Relaxor Ferroelectrics. <i>Chemistry of Materials</i> , 2017 , 29, 5767-5771	9.6	29
446	Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. <i>Energy and Environmental Science</i> , 2017 , 10, 1677-1693	35.4	111
445	Polymorphism in a high-entropy alloy. <i>Nature Communications</i> , 2017 , 8, 15687	17.4	151
444	Burning lithium in CS2 for high-performing compact Li2Sgraphene nanocapsules for LiB batteries. <i>Nature Energy</i> , 2017 , 2,	62.3	271
443	Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys. <i>Acta Materialia</i> , 2017 , 134, 236-248	8.4	100
442	NiTi-Enabled Composite Design for Exceptional Performances. <i>Shape Memory and Superelasticity</i> , 2017 , 3, 67-81	2.8	4
441	In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix. <i>Acta Materialia</i> , 2017 , 130, 297-3	38 ⁹	36
440	Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses. <i>Nature Communications</i> , 2017 , 8, 14679	17.4	75
439	Charting the relationship between phase type-surface area-interactions between the constituent atoms and oxygen reduction activity of Pdtu nanocatalysts inside fuel cells by in operando high-energy X-ray diffraction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7355-7365	13	14
438	Novel elastic deformation mechanism in multifunctional TiNb alloy. <i>Materials Letters</i> , 2017 , 186, 378-38	313.3	1
437	Fabrication, microstructure and mechanical properties of WNiTi composites. <i>Journal of Alloys and Compounds</i> , 2017 , 695, 1976-1983	5.7	10
436	Probing the Release and Uptake of Water in \(\frac{1}{2}\)MnO2\(\frac{1}{2}\)KH2O. Chemistry of Materials, \(\frac{2017}{2}\), 29, 1507-1517	9.6	27

Structural responses of metallic glasses under neutron irradiation. Scientific Reports, 2017, 7, 16739

Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic

and cationic redox. Nature Energy, 2017, 2, 963-971

4.9

62.3

20

90

419

417	Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles. <i>Nano Letters</i> , 2017 , 17, 7892-7896	11.5	15
416	Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in (Na,Bi)TiO3\(\text{BaTiO3} \) single crystals near the morphotropic phase boundary. <i>Physical Review B</i> , 2017 , 96,	3.3	14
415	In-situ studies of large magnetostriction in DyCo2 compound by synchrotron-based high-energy X-ray diffraction. <i>Journal of Alloys and Compounds</i> , 2017 , 724, 1030-1036	5.7	1
414	Tuning Li-Ion Diffusion in ⊞iMnFePO Nanocrystals by Antisite Defects and Embedded Phase for Advanced Li-Ion Batteries. <i>Nano Letters</i> , 2017 , 17, 4934-4940	11.5	29
413	Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials. <i>Physical Review Letters</i> , 2017 , 119, 017601	7.4	62
412	Cation-Eutectic Transition via Sublattice Melting in CuInPS/InPS van der Waals Layered Crystals. <i>ACS Nano</i> , 2017 , 11, 7060-7073	16.7	25
411	Preparation and characterization of high Curie-temperature piezoelectric ceramics in a new Bi-based perovskite of (1 lk)PbTiO3-xBi(Zn1/2Hf1/2)O3. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 1352-135	56.8	4
410	Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys. <i>Materials Science & Microstructure and Processing</i> , 2017 , 680, 13-20	5.3	11
409	High performance lithium-manganese-rich cathode material with reduced impurities. <i>Nano Energy</i> , 2017 , 31, 247-257	17.1	18
408	PlatinumBickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12557-12568	13	35
407	Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction. <i>Nano Energy</i> , 2016 , 19, 522-531	17.1	50
406	In Operando XRD and TXM Study on the Metastable Structure Change of NaNi1/3Fe1/3Mn1/3O2 under Electrochemical Sodium-Ion Intercalation. <i>Advanced Energy Materials</i> , 2016 , 6, 1601306	21.8	95
405	Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials. <i>ACS Nano</i> , 2016 , 10, 8645-59	16.7	51
404	PdIh intermetallic alloy nanoparticles: highly selective ethane dehydrogenation catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 6965-6976	5.5	85
403	Self-Similar Random Process and Chaotic Behavior In Serrated Flow of High Entropy Alloys. <i>Scientific Reports</i> , 2016 , 6, 29798	4.9	20
402	Local Structural Distortion Induced Uniaxial Negative Thermal Expansion in Nanosized Semimetal Bismuth. <i>Advanced Science</i> , 2016 , 3, 1600108	13.6	21
401	Giant Polarization and High Temperature Monoclinic Phase in a Lead-Free Perovskite of Bi(ZnTi)O-BiFeO. <i>Inorganic Chemistry</i> , 2016 , 55, 9513-9516	5.1	8
400	Tuning of Thermal Stability in Layered Li(NiMnCo)O. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13326-13334	16.4	128

CoMnSi compound. Journal of Materials Science, 2016, 51, 1896-1902

Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions. *Journal of the American Chemical*

4.3

16.4

4

69

Society, 2016, 138, 540-8

383

381	Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering. <i>Nano Letters</i> , 2016 , 16, 715-20	11.5	41
380	In-situ studies of low-field large magnetostriction in Tb1\(\mathbb{D}\)pxFe2 compounds by synchrotron-based high-energy x-ray diffraction. <i>Journal of Alloys and Compounds</i> , 2016 , 658, 372-376	5.7	10
379	Understanding Pt Nanoparticle Anchoring on Graphene Supports through Surface Functionalization. <i>ACS Catalysis</i> , 2016 , 6, 2642-2653	13.1	133
378	Probing cation intermixing in Li2SnO3. <i>RSC Advances</i> , 2016 , 6, 31559-31564	3.7	10
377	A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts. <i>Green Chemistry</i> , 2016 , 18, 3558-3566	10	53
376	Retaining Large and Adjustable Elastic Strains of Kilogram-Scale Nb Nanowires. <i>ACS Applied Materials & Acs Applied Materials & Acs Applied</i>	9.5	17
375	Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 831-840	3.8	118
374	Observation of magnetic-field-induced transformation in MnCo0.78Fe0.22Ge alloys with colossal strain output and large magnetocaloric effect. <i>Journal of Magnetism and Magnetic Materials</i> , 2016 , 406, 179-183	2.8	5
373	In-situ investigation of stress-induced martensitic transformation in TiNb binary alloys with low Young's modulus. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2016 , 651, 442-448	5.3	36
372	Preparation of TiO 2 Eeduced graphene oxide Industrial nanocomposites for phenol photocatalytic degradation. <i>Ceramics International</i> , 2016 , 42, 1339-1344	5.1	13
371	Load transfer in phase transforming matrix anowire composite revealing the significant load carrying capacity of the nanowires. <i>Materials and Design</i> , 2016 , 89, 721-726	8.1	12
370	Preparation of Porous Carbon-Manganese Dioxide Nanocomposite as a Supercapacitor Electrode. <i>International Journal of Electrochemical Science</i> , 2016 , 10706-10714	2.2	2
369	Deformation of a super-elastic NiTiNb alloy with controllable stress hysteresis. <i>Applied Physics Letters</i> , 2016 , 108, 261901	3.4	3
368	Hydration and Thermal Expansion in Anatase Nanoparticles. <i>Advanced Materials</i> , 2016 , 28, 6894-9	24	19
367	Phase coexistence and domain configuration in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy. <i>Applied Physics Letters</i> , 2016 , 108, 152905	3.4	23
366	Anomalous magnetoelastic behaviour near morphotropic phase boundary in ferromagnetic Tb1-xNdxCo2 system. <i>Applied Physics Letters</i> , 2016 , 109, 052904	3.4	6
365	Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy. <i>Applied Physics Letters</i> , 2016 , 108, 032405	3.4	60
364	Tunable thermal expansion and magnetism in Zr-doped ScF3. <i>Applied Physics Letters</i> , 2016 , 109, 181901	3.4	15

363	Anomalous expansion of Nb nanowires in a NiTi matrix under high pressure. <i>Applied Physics Letters</i> , 2016 , 109, 161903	3.4	0
362	Insight into the Capacity Fading Mechanism of Amorphous Se2S5 Confined in Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes. <i>Nano Letters</i> , 2016 , 16, 2663-73	11.5	69
361	Uniformly dispersed FeO x atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of LiD2 battery. <i>Nano Research</i> , 2016 , 9, 1913-1920	10	14
360	A new strategy to mitigate the initial capacity loss of lithium ion batteries. <i>Journal of Power Sources</i> , 2016 , 324, 150-157	8.9	44
359	Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. <i>Nano Letters</i> , 2016 , 16, 3955-65	11.5	208
358	Is alpha-V2O5 a cathode material for Mg insertion batteries?. <i>Journal of Power Sources</i> , 2016 , 323, 44-50	0 8.9	80
357	Determining Individual Phase Flow Properties in a Quench and Partitioning Steel with In Situ High-Energy X-Ray Diffraction and Multiphase Elasto-Plastic Self-Consistent Method. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2016 , 47, 5733-5749	2.3	27
356	Structural and magnetic properties of morphotropic phase boundary involved Tb1\(\text{UGdxFe2}\) compounds. Journal of Alloys and Compounds, 2016, 680, 177-181	5.7	7
355	Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies. <i>Nanoscale</i> , 2016 , 8, 10749-67	7.7	22
354	Composition Tunability and (111)-Dominant Facets of Ultrathin Platinum-Gold Alloy Nanowires toward Enhanced Electrocatalysis. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12166-75	16.4	93
353	Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass. <i>Materials and Design</i> , 2016 , 111, 473-481	8.1	15
352	Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes. <i>Journal of Power Sources</i> , 2016 , 334, 213-220	8.9	17
351	Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rolling. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2016 , 47, 6632-6644	2.3	15
350	Synthesis of Birnessite in the Presence of Phosphate, Silicate, or Sulfate. <i>Inorganic Chemistry</i> , 2016 , 55, 10248-10258	5.1	25
349	The Distortion-Adjusted Change of Thermal Expansion Behavior of Cubic Magnetic Semiconductor (Sc1\(\text{Mx}\))F3 (M = Al, Fe). <i>Journal of the American Ceramic Society</i> , 2016 , 99, 2886-2888	3.8	12
348	Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. <i>Nature Communications</i> , 2015 , 6, 6127	17.4	158
347	Insights from the Lattice-Strain Evolution on Deformation Mechanisms in Metallic-Glass-Matrix Composites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 2431-2442	2.3	21
346	Effects of Cobalt on the Crystalline Structures of the Ni-Mn-In Giant Magnetocaloric Heusler Alloys. <i>Springer Proceedings in Energy</i> , 2015 , 507-514	0.2	1

(2015-2015)

345	In situ high-energy synchrotron X-ray diffraction revealing precipitation reaction kinetics of silver ions with mixed halide ions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7492-7498	7.1	8	
344	Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized by Sputter Deposition. <i>Materials Research Letters</i> , 2015 , 3, 203-209	7.4	84	
343	Direct evidence for stress-induced transformation between coexisting multiple martensites in a NiMnCa multifunctional alloy. <i>Journal Physics D: Applied Physics</i> , 2015 , 48, 265304	3	10	
342	Elucidation of peptide-directed palladium surface structure for biologically tunable nanocatalysts. <i>ACS Nano</i> , 2015 , 9, 5082-92	16.7	83	
341	A nano lamella NbTiBiTi composite with high strength. <i>Materials Science & Discourse A: Structural Materials: Properties, Microstructure and Processing,</i> 2015 , 633, 121-124	5.3	9	
340	Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts. <i>Nanoscale</i> , 2015 , 7, 8122-	-3 4 ·7	16	
339	In Situ High-Energy X-Ray Diffraction Study of Load Partitioning in Nb/NiTi Nanocomposite Plate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3271-32	75 ^{2.3}	2	
338	Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies. <i>Metallurgical and Materials Transactions A: Physical</i>	2.3	10	
337	Evolution of Intergranular Stresses in a Martensitic and an Austenitic NiTi Wire During Loading Unloading Tensile Deformation. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 2476-2490	2.3	6	
336	Large Photovoltage and Controllable Photovoltaic Effect in PbTiO3-Bi(Ni2/3+xNb1/3☑)O3☐ Ferroelectrics. <i>Advanced Electronic Materials</i> , 2015 , 1, 1400051	6.4	48	
335	The migration mechanism of transition metal ions in LiNi0.5Mn1.5O4. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13031-13038	13	14	
334	Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. <i>Nanotechnology</i> , 2015 , 26, 164003	3.4	23	
333	In situ high-energy synchrotron X-ray diffraction studies and first principles modeling of EMnO2 electrodes in Li D 2 and Li-ion coin cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7389-7398	13	38	
332	On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments. <i>Nanoscale</i> , 2015 , 7, 17902-22	7.7	22	
331	Stability of Catalyzed Magnesium Hydride Nanocrystalline During Hydrogen Cycling. Part II: Microstructure Evolution. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 22272-22280	3.8	23	
330	PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. <i>Nano Energy</i> , 2015 , 18, 253-264	17.1	80	
329	Identifying the Atomic-Level Effects of Metal Composition on the Structure and Catalytic Activity of Peptide-Templated Materials. <i>ACS Nano</i> , 2015 , 9, 11968-79	16.7	22	
328	Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix. <i>Materials Science</i> & Structural Materials: Properties, Microstructure and Processing, 2015 , 646, 52-56	5.3	7	

309	A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess. <i>Scientific Reports</i> , 2015 , 5, 8357	4.9	19
308	Silver chlorobromide nanocubes with significantly improved uniformity: synthesis and assembly into photonic crystals. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 58-65	7.1	20
307	Effect of calcination conditions on porous reduced titanium oxides and oxynitrides via a preceramic polymer route. <i>Inorganic Chemistry</i> , 2015 , 54, 2802-8	5.1	10
306	Structure Identification of Two-Dimensional Colloidal Semiconductor Nanocrystals with Atomic Flat Basal Planes. <i>Nano Letters</i> , 2015 , 15, 4477-82	11.5	63
305	Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality. <i>ACS Applied Materials & District Materials & District</i>	9.5	29
304	Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses. <i>Intermetallics</i> , 2015 , 67, 132-137	3.5	5
303	Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 5546-5560	2.3	28
302	Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance LithiumBulfur Battery Cathodes. <i>Angewandte Chemie</i> , 2015 , 127, 4399-4403	3.6	165
301	Discovery of a <2 1 0>-fiber texture in medical-grade metastable beta titanium wire. <i>Acta Materialia</i> , 2015 , 87, 390-398	8.4	9
300	Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4325-9	16.4	630
299	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. <i>Energy and Environmental Science</i> , 2015 , 8, 1237-1244	35.4	193
298	CdE/Si Co/4 thin film displaying large magnetocalesis and etrain effects due to magnetoctrustural		
	Gd5(Si,Ge)4 thin film displaying large magnetocaloric and strain effects due to magnetostructural transition. <i>Applied Physics Letters</i> , 2015 , 106, 032402	3.4	22
297		3.4	10
297 296	A generalized method for high throughput in-situ experiment data analysis: An example of battery		
	A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration. <i>Journal of Power Sources</i> , 2015 , 279, 246-251 New route toward building active ruthenium nanoparticles on ordered mesoporous carbons with	8.9	10
296	A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration. <i>Journal of Power Sources</i> , 2015 , 279, 246-251 New route toward building active ruthenium nanoparticles on ordered mesoporous carbons with extremely high stability. <i>Scientific Reports</i> , 2014 , 4, 4540 Electrically conductive ultrananocrystalline diamond-coated natural graphite-copper anode for new	8.9	10
296 295	A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration. <i>Journal of Power Sources</i> , 2015 , 279, 246-251 New route toward building active ruthenium nanoparticles on ordered mesoporous carbons with extremely high stability. <i>Scientific Reports</i> , 2014 , 4, 4540 Electrically conductive ultrananocrystalline diamond-coated natural graphite-copper anode for new long life lithium-ion battery. <i>Advanced Materials</i> , 2014 , 26, 3724-9 A New Class of Metal Nanocomposites with Superior Mechanical Properties: Unusual Thermal	8.9	10

		Yane	i Ren
291	Average and local atomic-scale structure in BaZrxTi(1-x)O3 (x = 0. 10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 065901	1.8	74
290	Brownmillerite Ca2Co2O5: Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions. <i>Chemistry of Materials</i> , 2014 , 26, 7172-7182	9.6	28
289	Paving the way for using Liß batteries. ChemSusChem, 2014, 7, 2457-60	8.3	24
288	Heterobimetallic Metal©rganic Framework as a Precursor to Prepare a Nickel/Nanoporous Carbon Composite Catalyst for 4-Nitrophenol Reduction. <i>ChemCatChem</i> , 2014 , 6, 3084-3090	5.2	25
287	An Ultrastable Anode for Long-Life Room-Temperature Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2014 , 126, 9109-9115	3.6	34
286	Failure Study of Commercial LiFePO4Cells in over-Discharge Conditions Using Electrochemical Impedance Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A620-A632	3.9	39
285	A distinct atomic structure-catalytic activity relationship in 3-10 nm supported Au particles. <i>Nanoscale</i> , 2014 , 6, 532-8	7.7	24
284	Unexpected high-temperature stability of En4Sb3 opens the door to enhanced thermoelectric performance. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1497-504	16.4	97
283	Migration of Mn cations in delithiated lithium manganese oxides. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 20697-702	3.6	18
282	A XANES study of LiVPO4F: a factor analysis approach. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3254-60	3.6	18
281	Li-Se battery: absence of lithium polyselenides in carbonate based electrolyte. <i>Chemical Communications</i> , 2014 , 50, 5576-9	5.8	134
280	Quantitative determination of fragmentation kinetics and thermodynamics of colloidal silver nanowires by in situ high-energy synchrotron X-ray diffraction. <i>Nanoscale</i> , 2014 , 6, 365-70	7.7	19
279	Molecular-level insights into the reactivity of siloxane-based electrolytes at a lithium-metal anode. <i>ChemPhysChem</i> , 2014 , 15, 2077-83	3.2	9
278	Facile route fabrication of nickel based mesoporous carbons with high catalytic performance towards 4-nitrophenol reduction. <i>Green Chemistry</i> , 2014 , 16, 2273	10	90
277	Hydrogen Storage Properties of Magnesium Hydride with V-Based Additives. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 21778-21784	3.8	27
276	GeO2BnCoC Composite Anode Material for Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3960-3967	3.8	28
275	In situ diffraction of highly dispersed supported platinum nanoparticles. <i>Catalysis Science and Technology</i> , 2014 , 4, 3053-3063	5.5	34
274	Probing thermally induced decomposition of delithiated Li(1.2-x)Ni(0.15)Mn(0.55)Co(0.1)O2 by in situ high-energy X-ray diffraction. <i>ACS Applied Materials & Description of the Action State of the Action Sta</i>	9.5	39

273	Differentiating allotropic LiCoO2/Li2Co2O4: A structural and electrochemical study. <i>Journal of Power Sources</i> , 2014 , 271, 97-103	8.9	16
272	Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13566-9	16.4	119
271	High-energy X-ray diffuse scattering studies on deformation-induced spatially confined martensitic transformations in multifunctional TiØ4NbØZrØSn alloy. <i>Acta Materialia</i> , 2014 , 81, 476-486	8.4	24
270	Goss Texture Evolution of Grain Oriented Silicon Steel by High-Energy X-ray Diffraction. <i>Acta Metallurgica Sinica (English Letters)</i> , 2014 , 27, 530-533	2.5	2
269	In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 17920-5	9.5	33
268	Improved cyclability of a lithiumBulfur battery using POPBulfur composite materials. <i>RSC Advances</i> , 2014 , 4, 27518-27521	3.7	18
267	Solving the nanostructure problem: exemplified on metallic alloy nanoparticles. <i>Nanoscale</i> , 2014 , 6, 100	487 61	29
266	Insights into the Phase Formation Mechanism of [0.5Li2MnO3l\tilde{D}.5LiNi0.5Mn0.5O2] Battery Materials. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1-A5	3.9	38
265	Layered P2/O3 Intergrowth Cathode: Toward High Power Na-Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1400458	21.8	146
264	Ordered structure and thermal expansion in tungsten bronze Pbk(0.5)Li(0.5)NbDI <i>lnorganic</i> Chemistry, 2014 , 53, 9174-80	5.1	23
263	High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithium-ion batteries. <i>Journal of Power Sources</i> , 2014 , 263, 7-12	8.9	13
262	Covalent heterogenization of discrete bis(8-quinolinolato)dioxomolybdenum(VI) and dioxotungsten(VI) complexes by a metal-template/metal-exchange method: Cyclooctene epoxidation catalysts with enhanced performances. <i>Journal of Molecular Catalysis A</i> , 2014 , 392, 134-142		3
261	In situ X-ray diffraction study of dehydrogenation of MgH2 with Ti-based additives. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 5868-5873	6.7	28
260	Influence of Annealing and Pre-Straining on the Coupling Effect of a TiNi-Nb Nanowire Composite. <i>Materials Science Forum</i> , 2014 , 787, 307-312	0.4	1
259	An ultrastable anode for long-life room-temperature sodium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8963-9	16.4	116
258	LaSrVO4: A candidate for the spin-orbital liquid state. <i>Physical Review B</i> , 2014 , 89,	3.3	7
257	Thermodynamic Destabilization of Magnesium Hydride Using Mg-Based Solid Solution Alloys. Journal of Physical Chemistry C, 2014 , 118, 11526-11535	3.8	44
256	Local strain matching between Nb nanowires and a phase transforming NiTi matrix in an in-situ composite. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 610, 6-9	5.3	11

255	Formation of Li2MnO3 investigated by in situ synchrotron probes. <i>Journal of Power Sources</i> , 2014 , 266, 341-346	8.9	14
254	Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 3282-9	9.5	51
253	Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction. <i>Acta Materialia</i> , 2014 , 76, 342-354	8.4	39
252	The Structural Evolution of V2O5 Nanocystals during Electrochemical Cycling Studied Using In operando Synchrotron Techniques. <i>Electrochimica Acta</i> , 2014 , 136, 318-322	6.7	16
251	High damping NiTi/Ti3Sn in situ composite with transformation-mediated plasticity. <i>Materials & Design</i> , 2014 , 63, 460-463		13
250	A novel multifunctional NiTi/Ag hierarchical composite. <i>Scientific Reports</i> , 2014 , 4, 5267	4.9	15
249	Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix. <i>Scientific Reports</i> , 2014 , 4, 6753	4.9	12
248	Effect of heat treatment temperature on nitinol wire. <i>Applied Physics Letters</i> , 2014 , 105, 071904	3.4	7
247	Insight into sulfur reactions in Li-S batteries. ACS Applied Materials & Date of the Action of the Control of t	9.5	107
246	Bi-O covalency in PbTiO3-BiInO3 with enhanced ferroelectric properties: Synchrotron radiation diffraction and first-principles study. <i>Applied Physics Letters</i> , 2014 , 104, 252901	3.4	9
245	Evolution of structure in Na0.5Bi0.5TiO3 single crystals with BaTiO3. <i>Applied Physics Letters</i> , 2014 , 105, 162913	3.4	27
244	Gallium SulfideBingle-Walled Carbon Nanotube Composites: High-Performance Anodes for Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2014 , 24, 5435-5442	15.6	78
243	In situ synchrotron X-ray diffraction study of deformation behavior and load transfer in a Ti2Ni-NiTi composite. <i>Applied Physics Letters</i> , 2014 , 105, 041910	3.4	12
242	Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites. <i>Journal of Alloys and Compounds</i> , 2014 , 617, 933-945	5.7	37
241	Novel Ti3Sn based high damping material with high strength. <i>Materials Research Innovations</i> , 2014 , 18, S4-584-S4-587	1.9	1
240	In situ synchrotron investigation of the deformation behavior of nanolamellar Ti5Si3/TiNi composite. <i>Scripta Materialia</i> , 2014 , 78-79, 53-56	5.6	19
239	A New Class of Metal Nanocomposites With Superior Mechanical Properties: Unusual Thermal Expansion in NbTi-Nanowires / NiTi-Matrix Composite 2014 , 127-135		
238	Nanostructured Graphenes and Metal Oxides for Fuel Cell and Battery Applications. <i>Advanced Materials Research</i> , 2013 , 705, 126-131	0.5	2

237	Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 5572-81	3.6	74
236	Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. <i>Nano Letters</i> , 2013 , 13, 4182-9	11.5	170
235	Low-field large magnetostriction in DyCo2 due to field-induced rearrangement of tetragonal variants. <i>Applied Physics Letters</i> , 2013 , 103, 111903	3.4	9
234	In situ high-energy X-ray diffraction studies of deformation-induced phase transformation in Ti-based amorphous alloy composites containing ductile dendrites. <i>Acta Materialia</i> , 2013 , 61, 5008-5017	7 ^{8.4}	47
233	Examining Hysteresis in Composite xLi2MnO3[[1☑]LiMO2 Cathode Structures. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 6525-6536	3.8	203
232	Stress induced martensite transformation in CoIBCrBMo alloy during room temperature deformation. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 580, 209-216	5.3	26
231	In Situ Small-Angle X-ray Scattering from Pd Nanoparticles Formed by Thermal Decomposition of Organo-Pd Catalyst Precursors Dissolved in Hydrocarbons. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 22627-22635	3.8	15
230	Direct evidence of correlations between relaxor behavior and polar nano-regions in relaxor ferroelectrics: A case study of lead-free piezoelectrics Na0.5Bi0.5TiO3-x%BaTiO3. <i>Applied Physics Letters</i> , 2013 , 103, 241914	3.4	37
229	A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. <i>Science</i> , 2013 , 339, 1191-4	33.3	190
228	In Situ Synchrotron X-Ray Techniques for Real-Time Probing of Colloidal Nanoparticle Synthesis. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 399-419	3.1	58
227	Evolution of lattice strain and phase transformation of IIII Ti alloy during room temperature cyclic tension. <i>Acta Materialia</i> , 2013 , 61, 6830-6842	8.4	17
226	Study of Thermal Decomposition of Li1-x(Ni1/3Mn1/3Co1/3)0.9O2 Using In-Situ High-Energy X-Ray Diffraction. <i>Advanced Energy Materials</i> , 2013 , 3, 729-736	21.8	45
225	Atomic pair distribution functions analysis of disordered low-Z materials. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 8544-54	3.6	31
224	Mechanisms related to different generations of Il precipitation during continuous cooling of a nickel base superalloy. <i>Acta Materialia</i> , 2013 , 61, 280-293	8.4	85
223	The effect of oxygen crossover on the anode of a Li-O(2) battery using an ether-based solvent: insights from experimental and computational studies. <i>ChemSusChem</i> , 2013 , 6, 51-5	8.3	202
222	In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery. Journal of Power Sources, 2013 , 230, 32-37	8.9	61
221	Influence of short time anneal on recoverable strain of beta III titanium alloy. <i>Materials Science</i> & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 172-179	5.3	11
220	First-order magnetostructural transformation in Fe doped Mntote alloys. <i>Journal of Alloys and Compounds</i> , 2013 , 577, 486-490	5.7	26

219	Texture in two cold-drawn beta Ti alloys. Scripta Materialia, 2013, 68, 518-521	5.6	7
218	Large enhancements of magnetic anisotropy in oxide-free iron nanoparticles. <i>Journal of Magnetism and Magnetic Materials</i> , 2013 , 331, 156-161	2.8	22
217	In-Situ Annealing Study of Transformation of hand Texture of Interstitial-Free Steel Sheet by High-Energy X-Ray Diffraction. <i>Journal of Iron and Steel Research International</i> , 2013 , 20, 38-41	1.2	10
216	Atomic-scale mechanisms of tensionBompression asymmetry in a metallic glass. <i>Acta Materialia</i> , 2013 , 61, 1843-1850	8.4	25
215	In situ fabrication of porous-carbon-supported \(\frac{1}{2}\)MnO2 nanorods at room temperature: application for rechargeable Li\(\tilde{D}\)2 batteries. \(\textit{Energy and Environmental Science}\), 2013, 6, 519	35.4	164
214	Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite. <i>Physical Review Letters</i> , 2013 , 110, 115901	7.4	85
213	New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. <i>Nature Communications</i> , 2013 , 4, 1513	17.4	104
212	Heterogeneous in-situ nanostructure contributes to the thermoelectric performance of Zn4Sb3. <i>Applied Physics Letters</i> , 2013 , 102, 163902	3.4	16
211	Dy-V magnetic interaction and local structure bias on the complex spin and orbital ordering in Dy1\(\text{NT} bxVO3 (x=0 and 0.2). <i>Physical Review B</i> , 2013 , 87,	3.3	4
210	Interface coherency strain relaxation due to plastic deformation in single crystal Ni-base superalloys. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 568, 83-87	5.3	4
209	Giant enhancement and anomalous thermal hysteresis of saturation moment in magnetic nanoparticles embedded in multiwalled carbon nanotubes. <i>Nano Letters</i> , 2013 , 13, 2993-6	11.5	4
208	Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable LiD2 batteries. <i>RSC Advances</i> , 2013 , 3, 8276	3.7	52
207	Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 8328-8341	6.7	32
206	(De)lithiation mechanism of Li/SeS(x) ($x = 0-7$) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. <i>Journal of the American Chemical Society</i> , 2013 , 135, 804	7 ¹ 56 ⁴	268
205	In-situ high-energy synchrotron X-ray diffraction study of micromechanical behavior of multiple phases in Ni47Ti44Nb9 shape memory alloy. <i>Materials Science & Discourse and Processing</i> , 2013 , 560, 458-465	5.3	19
204	Effect of the metallic glass volume fraction on the mechanical properties of Zr-based metallic glass reinforced with porous W composite. <i>Materials Science & Description of the Materials Properties, Microstructure and Processing</i> , 2013 , 561, 152-158	5.3	5
203	Failure Investigation of LiFePO4Cells in Over-Discharge Conditions. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A793-A804	3.9	54
202	A Study of High-Voltage LiNi0.5Mn1.5O4and High-Capacity Li1.5Ni0.25Mn0.75O2.5Blends. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1079-A1083	3.9	13

(2012-2013)

201	Mechanically alloyed composite anode materials based on SiOBnxFeyCz for Li-ion batteries. Journal of Materials Chemistry A, 2013 , 1, 4376	13	19
200	Synthesis, Characterization, and Structural Modeling of High-Capacity, Dual Functioning MnO2 Electrode/Electrocatalysts for Li-O2 Cells. <i>Advanced Energy Materials</i> , 2013 , 3, 75-84	21.8	103
199	In situ isothermal crystallisation of Zr48Cu36Al8Ag8 bulk metallic glass based on pair distribution function analyses. <i>Materials Research Innovations</i> , 2013 , 17, 89-93	1.9	3
198	Electromechanical responses of Cu strips. <i>Journal of Applied Physics</i> , 2013 , 113, 183521	2.5	6
197	Electrochemical Study and Material Characterization of xSiO[(1-x)Sn30Co30C40Composite Anode Material for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A882-A887	3.9	7
196	Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content. <i>Scientific Reports</i> , 2013 , 3, 1983	4.9	26
195	Incommensurate antiferromagnetism in a pure spin system via cooperative organization of local and itinerant moments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3287-92	11.5	22
194	New intrinsic mechanism on gum-like superelasticity of multifunctional alloys. <i>Scientific Reports</i> , 2013 , 3, 2156	4.9	48
193	Texture evolution during nitinol martensite detwinning and phase transformation. <i>Applied Physics Letters</i> , 2013 , 103, 241909	3.4	21
192	A novel stretchable coaxial NiTi-sheath/Cu-core composite with high strength and high conductivity. <i>Advanced Materials</i> , 2013 , 25, 1199-202	24	14
191	Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis. <i>Applied Physics Letters</i> , 2013 , 102, 231905	3.4	9
190	Dynamic off-centering of Cr3+ ions and short-range magneto-electric clusters in CdCr2S4. <i>Physical Review B</i> , 2012 , 86,	3.3	27
189	Nearly-Zero Thermal Expansion Along the Layer-Stacking Axis of ZnSe-Based Inorganic@rganic Hybrid Semiconductor Materials. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 5966-5971	2.3	7
188	A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3-x%LiNbO3 solid solution. <i>Journal of Applied Physics</i> , 2012 , 111, 103503	2.5	47
187	New Anode Material Based on SiOBnxCoyCz for Lithium Batteries. <i>Chemistry of Materials</i> , 2012 , 24, 4653-4661	9.6	43
186	Failure Investigation of LiFePO4Cells under Overcharge Conditions. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A678-A687	3.9	51
185	Insight into the local structure of barium indate oxide-ion conductors: an X-ray total scattering study. <i>Dalton Transactions</i> , 2012 , 41, 50-3	4.3	18
184	Noncrystallographic Atomic Arrangement Driven Enhancement of the Catalytic Activity of Au Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 26668-26673	3.8	7

183	Role of support-nanoalloy interactions in the atomic-scale structural and chemical ordering for tuning catalytic sites. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15048-60	16.4	75
182	Morphological and crystalline evolution of nanostructured MnO2 and its application in lithiumair batteries. <i>ACS Nano</i> , 2012 , 6, 8067-77	16.7	239
181	Structural coherence and ferroelectric order in nanosized multiferroic YMnO3. <i>Physical Review B</i> , 2012 , 86,	3.3	8
180	Nanostructured high-energy cathode materials for advanced lithium batteries. <i>Nature Materials</i> , 2012 , 11, 942-7	27	781
179	Changes in the atomic structure through glass transition observed by X-ray scattering. <i>Intermetallics</i> , 2012 , 23, 111-115	3.5	3
178	Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. <i>Journal of Power Sources</i> , 2012 , 218, 21-27	8.9	259
177	Early stage formation of iron oxyhydroxides during neutralization of simulated acid mine drainage solutions. <i>Environmental Science & Environmental Sc</i>	10.3	62
176	Real-Time Probing of the Synthesis of Colloidal Silver Nanocubes with Time-Resolved High-Energy Synchrotron X-ray Diffraction. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 11842-11847	3.8	35
175	A magnetoelectric multiglass state in multiferroic YbFe2O4. <i>Journal of Applied Physics</i> , 2012 , 111, 07D9	02 5	13
174	A synchrotron X-ray diffraction study on the phase transformation kinetics and texture evolution of a TRIP steel subjected to torsional loading. <i>Acta Materialia</i> , 2012 , 60, 6703-6713	8.4	40
173	Direct synthesis of bimetallic Pd3Ag nanoalloys from bulk Pd3Ag alloy. <i>Inorganic Chemistry</i> , 2012 , 51, 13281-8	5.1	5
172	Thermal transformation of EMnO2 nanoflowers studied by in-situ TEM. <i>Science China Chemistry</i> , 2012 , 55, 2346-2352	7.9	9
171	Atomic-scale mechanisms of the glass-forming ability in metallic glasses. <i>Physical Review Letters</i> , 2012 , 109, 105502	7.4	90
170	Reply to comment on Molecular arrangement in water: random but not quite <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 338002	1.8	1
169	Ultrahigh electromechanical response in (1☑)(Na0.5Bi0.5)TiO3-xBaTiO3 single-crystals via polarization extension. <i>Journal of Applied Physics</i> , 2012 , 111, 093508	2.5	46
168	Molecular arrangement in water: random but not quite. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 155102	1.8	25
167	Enhanced electron extraction from template-free 3D nanoparticulate transparent conducting oxide (TCO) electrodes for dye-sensitized solar cells. <i>ACS Applied Materials & Description (TCO)</i> electrodes for dye-sensitized solar cells. <i>ACS Applied Materials & Description (TCO)</i> electrodes for dye-sensitized solar cells. <i>ACS Applied Materials & Description (TCO)</i> electrodes for dye-sensitized solar cells.	9.5	43
166	High-Energy Synchrotron X-Ray Diffraction and Its Application to In Situ Structural Phase-Transition Studies in Complex Sample Environments. <i>Jom</i> , 2012 , 64, 140-149	2.1	27

165	High-Energy Synchrotron X-Ray Diffraction for In Situ Study of Phase Transformation in Shape-Memory Alloys. <i>Jom</i> , 2012 , 64, 150-160	2.1	4	
164	In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy. <i>Jom</i> , 2012 , 64, 167-173	2.1	6	
163	Facile synthesis of gamma-MnS hierarchical nanostructures with high photoluminescence. <i>Ceramics International</i> , 2012 , 38, 875-881	5.1	14	
162	Transition in superelasticity for Ni 55 Co \times Fe 18 Ga 27 alloys due to strain glass transition. <i>Europhysics Letters</i> , 2012 , 98, 46004	1.6	23	
161	Ambient-stable tetragonal phase in silver nanostructures. <i>Nature Communications</i> , 2012 , 3, 971	17.4	106	
160	Superelastic memory effect in in-situ NbTi-nanowire-NiTi nanocomposite. <i>Applied Physics Letters</i> , 2012 , 101, 173115	3.4	6	
159	In situ X-ray diffraction study of deformation behavior in a Fe/NiTi composite. <i>Applied Physics Letters</i> , 2012 , 101, 221904	3.4	4	
158	Failure Investigation of LiFePO4 Cells under Overcharge Conditions. <i>ECS Transactions</i> , 2012 , 41, 1-12	1	5	
157	High-resolution Transmission Electron Microscopy Study of Compositional Effects on the Atomic Structure of Multiferroic PbTi1-xFexO3 Nanopowders. <i>Microscopy and Microanalysis</i> , 2012 , 18, 1896-18	9 7 ·5		
156	Atomic migration and bonding characteristics during a glass transition investigated using as-cast Zr-Cu-Al. <i>Physical Review B</i> , 2011 , 83,	3.3	17	
155	Three-dimensional structure of multicomponent (NaD)0.[[(PD) [Ix(BD] k]]0.[glasses by high-energy x-ray diffraction and constrained reverse Monte Carlo simulations. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 035403	1.8	7	
154	Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5604		40	
153	High-pressure synthesis and physical properties of perovskite and post-perovskite Ca1⊠SrxIrO3. <i>Physical Review B</i> , 2011 , 83,	3.3	34	
152	Nanoscale phase separation in coated Ag nanoparticles. <i>Nanoscale</i> , 2011 , 3, 4220-5	7.7	4	
151	Neutron spectroscopy of magnesium dihydride. <i>Journal of Alloys and Compounds</i> , 2011 , 509, S599-S603	5.7	10	
150	An in situ high-energy X-ray diffraction study of micromechanical behavior of Zr-based metallic glass reinforced porous W matrix composite. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 530, 344-348	5.3	7	
149	Radial distribution of martensitic phase transformation in a metastable stainless steel under torsional deformation: A synchrotron X-ray diffraction study. <i>Materials Letters</i> , 2011 , 65, 3013-3015	3.3	9	
148	Exchange field on the rare earth Sm3+ in a single crystal perovskite SmMnO3. <i>Physical Review B</i> , 2011 , 84,	3.3	35	

Magnetic-field-driven reversal phase transition in highly textured and self-accommodated

Local structural investigation of SmFeAsOExF(x) high temperature superconductors. Journal of

martensites of NilloMnIh composite. Journal of Strain Analysis for Engineering Design, 2011, 46, 607-613 1.3

1.8

Physics Condensed Matter, 2011, 23, 272201

131

130

129	Solid dye-sensitized solar cells prepared through a counter strategy for filling of solid hole transporter. <i>Journal of Renewable and Sustainable Energy</i> , 2011 , 3, 063101	2.5	3
128	From Three-Dimensional Flower-Like \(\text{H}\)iii(OH)2 Nanostructures to Hierarchical Porous NiO Nanoflowers: Microwave-Assisted Fabrication and Supercapacitor Properties. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 3560-3564	3.8	164
127	Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO3. <i>Physical Review B</i> , 2010 , 81,	3.3	94
126	Origin of magnetic freezing in pyrochlore Y2Mo2O7. <i>Physical Review B</i> , 2010 , 82,	3.3	14
125	Invited article: High-pressure techniques for condensed matter physics at low temperature. <i>Review of Scientific Instruments</i> , 2010 , 81, 041301	1.7	38
124	Resolving ensembled microstructural information of bulk-metallic-glass-matrix composites using synchrotron x-ray diffraction. <i>Applied Physics Letters</i> , 2010 , 97, 171910	3.4	8
123	Strain-induced dimensionality crossover and associated pseudoelasticity in the premartensitic phase of Ni2MnGa. <i>Applied Physics Letters</i> , 2010 , 97, 171905	3.4	9
122	PbSe quantum dots: Finite, off-stoichiometric, and structurally distorted. <i>Physical Review B</i> , 2010 , 81,	3.3	48
121	Nanophase evolution at semiconductor/electrolyte interface in situ probed by time-resolved high-energy synchrotron X-ray diffraction. <i>Nano Letters</i> , 2010 , 10, 3747-53	11.5	20
120	Size-dependent amorphization of nanoscale Y2O3 at high pressure. <i>Physical Review Letters</i> , 2010 , 105, 095701	7.4	87
119	Giant magnetic moment enhancement of nickel nanoparticles embedded in multiwalled carbon nanotubes. <i>Physical Review B</i> , 2010 , 82,	3.3	15
118	Origin of diffuse scattering in relaxor ferroelectrics. <i>Physical Review B</i> , 2010 , 81,	3.3	47
117	Response of nanoparticle structure to different types of surface environments: Wide-angle x-ray scattering and molecular dynamics simulations. <i>Physical Review B</i> , 2010 , 81,	3.3	27
116	In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded NitoMnth composite. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 3561-3571	5.3	19
115	Texture crossover: Trace from multiple grains to a subgrain. <i>Materials Science & Description of the Structural Materials: Properties, Microstructure and Processing,</i> 2010 , 528, 3-10	5.3	7
114	The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 7057-7067	5.3	146
113	In-Situ High-Energy X-Ray Diffuse-Scattering Study of the Phase Transition of Ni2MnGa Single Crystal under High Magnetic Field. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2010 , 41, 1269-1275	2.3	1
112	Formation of Deformation Textures in Face-Centered-Cubic Materials Studied by In-Situ High-Energy X-Ray Diffraction and Self-Consistent Model. <i>Metallurgical and Materials Transactions</i> A: Physical Metallurgy and Materials Science 2010, 41, 1246-1254	2.3	6

Stress and Strain Partitioning of Ferrite and Martensite during Deformation. Metallurgical and

Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1383-1387

Separation and Purification Technology, 2009, 68, 312-319

Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification.

2.3

8.3

73

407

95

94

(2008-2009)

93	Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. <i>Bioresource Technology</i> , 2009 , 100, 4139-46	11	124
92	Microstructure evolution during cold rolling in a nanocrystalline Ni E e alloy determined by synchrotron X-ray diffraction. <i>Acta Materialia</i> , 2009 , 57, 4988-5000	8.4	66
91	Coexistence of the spin-density wave and superconductivity in Ba 1 M K x Fe 2 As 2. <i>Europhysics Letters</i> , 2009 , 85, 17006	1.6	296
90	Atomic-scale structure of biogenic materials by total X-ray diffraction: a study of bacterial and fungal MnOx. <i>ACS Nano</i> , 2009 , 3, 441-5	16.7	40
89	Three-dimensional structure of fast ion conducting 0.5Li2S+0.5[(1월)GeS2+xGeO2] glasses from high-energy X-ray diffraction and reverse Monte Carlo simulations. <i>Journal of Non-Crystalline Solids</i> , 2009 , 355, 430-437	3.9	9
88	Coupled structural/magnetocrystalline anisotropy transitions in the doped perovskite cobaltite Pr1\subseteq SrxCoO3. <i>Physical Review B</i> , 2009 , 79,	3.3	38
87	Size, shape, and internal atomic ordering of nanocrystals by atomic pair distribution functions: a comparative study of gamma-Fe2O3 nanosized spheres and tetrapods. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14264-6	16.4	55
86	Origin of morphotropic phase boundaries in ferroelectrics. <i>Nature</i> , 2008 , 451, 545-8	50.4	640
85	Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. <i>Materials Letters</i> , 2008 , 62, 47-50	3.3	91
84	Heat capacity of #AlH(3) and #AlD(3) at temperatures up to 1000[K. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 275204	1.8	10
83	Structural coherence and ferroelectricity decay in submicron- and nano-sized perovskites. <i>Physical Review B</i> , 2008 , 78,	3.3	62
82	The In Situ Study on the Micro-Structural Characters of IF Steel at Early Stage of Recrystallization Using High-Energy X-Ray. <i>Materials Science Forum</i> , 2008 , 575-578, 972-977	0.4	
81	Plasticity of bulk metallic glasses improved by controlling the solidification condition. <i>Journal of Materials Research</i> , 2008 , 23, 941-948	2.5	42
80	In situneutron diffraction study of micromechanical interactions and phase transformation in NiMnta alloy under uniaxial and hydrostatic stress. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 104256	1.8	2
79	Magnetic switching and phase competition in the multiferroic antiferromagnet Mn1⊠FexWO4. <i>Physical Review B</i> , 2008 , 78,	3.3	36
78	Volume dependence of the magnetic coupling in LaFe13\(\mathbb{B}\)Six based compounds. <i>Applied Physics Letters</i> , 2008 , 92, 101904	3.4	25
77	Direct evidence of detwinning in polycrystalline NiMnta ferromagnetic shape memory alloys during deformation. <i>Journal of Applied Physics</i> , 2008 , 104, 103519	2.5	8
76	Frustrated superexchange interaction versus orbital order in a LaVO3 crystal. <i>Physical Review Letters</i> , 2008 , 100, 046401	7.4	17

75	Strain-dependent deformation behavior in nanocrystalline metals. <i>Physical Review Letters</i> , 2008 , 101, 015502	7.4	50
74	New Sequences of Phase Transition in Ni-Mn-Ga Ferromagnetic Shape Memory Nanoparticles. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 466-469	2.3	17
73	Advanced Micromechanical Model for Transformation-Induced Plasticity Steels with Application of In-Situ High-Energy X-Ray Diffraction Method. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 3089-3096	2.3	36
72	In-Situ High-Energy X-Ray Diffuse-Scattering Study of the Phase Transition in a Ni2MnGa Ferromagnetic Shape-Memory Crystal. <i>Metallurgical and Materials Transactions A: Physical</i> <i>Metallurgy and Materials Science</i> , 2008 , 39, 3184-3190	2.3	4
71	In situ high-energy X-ray studies of magnetic-field-induced phase transition in a ferromagnetic shape memory NitoMnIh alloy. <i>Acta Materialia</i> , 2008 , 56, 913-923	8.4	37
70	Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. <i>International Journal of Plasticity</i> , 2008 , 24, 1440-1456	7.6	55
69	Martensitic and magnetic transformation in NiMnCaCo ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 213-218	5.3	47
68	Atomic-scale structure of nanocrystalline CeO2\(\mathbb{I}\)rO2oxides by total x-ray diffraction and pair distribution function analysis. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 156205	1.8	15
67	Titania Polymorphs by Soft Chemistry: Is There a Common Structural Pattern?. <i>Chemistry of Materials</i> , 2007 , 19, 2512-2518	9.6	57
66	Atomic-Scale Structure of Nanocrystals by High-Energy X-ray Diffraction and Atomic Pair Distribution Function Analysis: Study of FexPd100-x(x= 0, 26, 28, 48) Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 714-720	3.8	42
65	Orbital fluctuations and orbital flipping in RVO3 perovskites. <i>Physical Review Letters</i> , 2007 , 99, 197201	7.4	28
64	Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. <i>Physical Review Letters</i> , 2007 , 99, 157201	7.4	76
63	Direct evidence on magnetic-field-induced phase transition in a NiCoMnIn ferromagnetic shape memory alloy under a stress field. <i>Applied Physics Letters</i> , 2007 , 90, 101917	3.4	30
62	Microscopic structure and dynamics of molten Se50Te50 alloys. <i>Journal of Chemical Physics</i> , 2007 , 127, 144707	3.9	3
61	Nanoscale defect clusters in metallic glasses. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 376217	1.8	3
60	Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal. <i>Physical Review Letters</i> , 2007 , 99, 215901	7.4	32
59	Superexchange interaction in orbitally fluctuating RVO3. Physical Review Letters, 2007, 99, 156401	7.4	43
58	Three-dimensional structure of CdX (X=Se,Te) nanocrystals by total x-ray diffraction. <i>Journal of Applied Physics</i> , 2007 , 102, 044304	2.5	14

57	Structural transition of ferromagnetic Ni2MnGa nanoparticles. <i>Journal of Applied Physics</i> , 2007 , 101, 06	53 53 0	41
56	The Study on the Microstructure Characters of Pure Iron during Cold Rolling by High Energy X-Ray Diffraction. <i>Materials Science Forum</i> , 2007 , 561-565, 889-892	0.4	О
55	Preferred orientation of anorthite deformed experimentally in Newtonian creep. <i>Earth and Planetary Science Letters</i> , 2007 , 264, 188-207	5.3	54
54	PbZr1⊠TixO3 by soft synthesis: Structural aspects. <i>Physical Review B</i> , 2007 , 76,	3.3	7
53	Order and dynamics of intrinsic nanoscale inhomogeneities in manganites. <i>Physical Review B</i> , 2007 , 76,	3.3	50
52	Preferred orientation and elastic anisotropy in shales. <i>Geophysics</i> , 2007 , 72, D33-D40	3.1	71
51	Tracing Memory in Polycrystalline Ferromagnetic Shape-Memory Alloys. <i>Advanced Materials</i> , 2006 , 18, 2392-2396	24	27
50	Pressure-induced long-range magnetic ordering in cobalt oxide. <i>Physical Review B</i> , 2006 , 74,	3.3	15
49	Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation. <i>Applied Physics Letters</i> , 2006 , 88, 171914	3.4	55
48	Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy x-ray diffraction technique. <i>Applied Physics Letters</i> , 2006 , 89, 101918	3.4	37
47	Determining thermal diffuse scattering of vanadium with x-ray transmission scattering. <i>Applied Physics Letters</i> , 2006 , 88, 061903	3.4	3
46	Atomic-Scale Structure of Nanocrystalline BaxSr1-xTiO3 ($x = 1, 0.5, 0$) by X-ray Diffraction and the Atomic Pair Distribution Function Technique. <i>Chemistry of Materials</i> , 2006 , 18, 814-821	9.6	89
45	Examining the oxygen isotope and magnetic field effect on phase separation in Sm0.5Sr0.5MnO3. Journal of Applied Physics, 2006 , 100, 103520	2.5	10
44	Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. <i>Physical Review B</i> , 2006 , 73,	3.3	168
43	Interplay between the local structural disorder and the length of structural coherence in stabilizing the cubic phase in nanocrystalline ZrO2. <i>Solid State Communications</i> , 2006 , 138, 279-284	1.6	13
42	Structure of nanocrystalline GaN from X-ray diffraction, Rietveld and atomic pair distribution function analyses. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4654		42
41	Atomic-scale structure of nanocrystalline ZrO2 prepared by high-energy ball milling. <i>Physical Review B</i> , 2005 , 71,	3.3	59
40	Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations. <i>Physical Review B</i> , 2005 , 72,	3.3	99

		Yano	S REN
39	Unconventional magnetic transitions in the mineral clinoatacamite Cu2Cl(OH)3. <i>Physical Review B</i> , 2005 , 71,	3.3	87
38	Magnetic-field-induced structural homogeneity of a phase-separated manganite. <i>Applied Physics Letters</i> , 2004 , 84, 4538-4540	3.4	2
37	Analysis and simulation of the structure of nanoparticles that undergo a surface-driven structural transformation. <i>Journal of Chemical Physics</i> , 2004 , 120, 11785-95	3.9	35
36	Structure of Nanocrystalline Alkali Metal Manganese Oxides by the Atomic Pair Distribution Function Technique. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 14956-14963	3.4	24
35	Structural, electronic, and magneto-optical properties of YVO3. <i>Physical Review B</i> , 2004 , 69,	3.3	55
34	Structure of Exfoliated Titanate Nanosheets Determined by Atomic Pair Distribution Function Analysis. <i>Chemistry of Materials</i> , 2004 , 16, 5153-5157	9.6	26
33	Evidence for orbital ordering in LaCoO3. <i>Physical Review B</i> , 2003 , 67,	3.3	208
32	Orbital-ordering-induced phase transition in LaVO3 and CeVO3. <i>Physical Review B</i> , 2003 , 67,	3.3	52
31	Optical and magneto-optical study of orbital and spin ordering transitions in YVO3. <i>Physica B: Condensed Matter</i> , 2002 , 312-313, 783-784	2.8	3
30	Neutron diffraction, x-ray diffraction, and specific heat studies of orbital ordering in YVO3. <i>Physical Review B</i> , 2002 , 65,	3.3	90
29	Electrical transport and optical properties of the incommensurate intergrowth compounds (SbS)1.15(TiS2)n with n 1 and 2. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 8011-8023	1.8	3
28	Transition between orbital orderings in YVO3. <i>Physical Review Letters</i> , 2001 , 87, 245501	7.4	106
27	Neutron scattering study of H2 adsorption in single-walled carbon nanotubes. <i>Applied Physics Letters</i> , 2001 , 79, 3684-3686	3.4	53
26	Magnetic properties of YVO3 single crystals. <i>Physical Review B</i> , 2000 , 62, 6577-6586	3.3	136
25	Temperature-induced magnetization reversal in a YVO3 single crystal. <i>Nature</i> , 1998 , 396, 441-444	50.4	252
24	(3 + 2)-Dimensional superspace approach to the structure of the stage-2 misfit layer compound (SbS)1.15(TiS2)2. <i>Acta Crystallographica Section B: Structural Science</i> , 1996 , 52, 389-397		9
23	Vacancies and electron localization in the incommensurate intergrowth compound (La0.95Se)1.21VSe2. <i>Acta Crystallographica Section B: Structural Science</i> , 1996 , 52, 398-405		24
22	Photoelectron spectroscopy study of the electronic structure of the incommensurate intergrowth compounds (SbS)1.15(TiS2)nwith n=1,2. <i>Journal of Physics Condensed Matter</i> , 1995 , 7, 5949-5958	1.8	7

21	(3 + 2)-Dimensional superspace approach to the structure of the incommensurate intergrowth compound: (SbS)1.15TiS2. <i>Acta Crystallographica Section B: Structural Science</i> , 1995 , 51, 275-287		14
20	Intergrain flux-pinning in relation to structural phase transformation and tweed formation in YBa2(Cu1-xFex)3O7-y and NdBa2(Cu1-xFex)3O7-y. <i>Physica C: Superconductivity and Its Applications</i> , 1992 , 199, 414-424	1.3	8
19	Coexistence of antiferromagnetism and superconductivity in YBa2(CU1-xFex)3O7 only for x around 0.10. <i>Physical Review B</i> , 1989 , 39, 12290-12292	3.3	3
18	Separate paramagnetism and superconductivity in YBa2Cu3Oz. <i>Applied Physics Letters</i> , 1988 , 53, 1007-7	1904	3
17	Neutron-diffraction study of NdBa2Cu3O7+x with x=0.06 and 0.18. <i>Physical Review B</i> , 1988 , 38, 11861-1	138564	15
16	Structure of the high-Tc superconductor Ba2YCu3Ox at 750 degreesC using neutron diffraction. <i>Physical Review B</i> , 1988 , 37, 5845-5847	3.3	2
15	Superconductivity in the new high-Tc superconductors RBa 2 Cu 3 O 9-y (R=Y, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb). <i>Chinese Physics Letters</i> , 1987 , 4, 437-440	1.8	4
14	Structure of the high-Tc superconductor Ba2YCu3O7+x above (124 K) and below (71 K) Tc by neutron diffraction. <i>Physical Review B</i> , 1987 , 36, 8810-8812	3.3	16
13	Crystal structure of the high-Tc superconductor Ba2YCu. <i>Physical Review B</i> , 1987 , 36, 5599-5601	3.3	27
12	Ultrathin Si Nanosheets Dispersed in Graphene Matrix Enable Stable Interface and High Rate Capability of Anode for Lithium-ion Batteries. <i>Advanced Functional Materials</i> ,2110046	15.6	8
11	Approaching theoretical specific capacity of iron-rich lithium iron silicate using graphene-incorporation and fluorine-doping. <i>Journal of Materials Chemistry A</i> ,	13	3
10	Operando Synchrotron Studies of Inhomogeneity during Anode-Free Plating of Li Metal in Pouch Cell Batteries. <i>Journal of the Electrochemical Society</i> ,	3.9	3
9	Phase Evolution and Thermal Expansion Behavior of a 🛭 Precipitated Ni-Based Superalloy by Synchrotron X-Ray Diffraction. <i>Acta Metallurgica Sinica (English Letters)</i> ,1	2.5	0
8	In Situ Scattering Studies of Crystallization Kinetics in a Phase-Separated ZrtufeAl Bulk Metallic Glass. <i>Acta Metallurgica Sinica (English Letters)</i> ,1	2.5	O
7	Revealing intrinsic and extrinsic piezoelectric contributions in phase coexistence system of PbTiO3-BiScO3. <i>Science China Materials</i> ,1	7.1	0
6	Comprehensive Insights into Nucleation, Autocatalytic Growth, and Stripping Efficiency for Lithium Plating in Full Cells. <i>ACS Energy Letters</i> ,3725-3733	20.1	4
5	Effect of Ni/Ti Ratio and Ta Content on NiTiTa Alloys. Shape Memory and Superelasticity,1	2.8	0
4	Investigating the Origin of the Enhanced Sodium Storage Capacity of Transition Metal Sulfide Anodes in Ether-Based Electrolytes. <i>Advanced Functional Materials</i> ,2110017	15.6	2

3	In-situ synchrotron high energy X-ray diffraction study of spontaneous reorientation of R phase upon cooling in nanocrystalline Ti50Ni45.5Fe4.5 alloy. <i>Rare Metals</i> ,1	5.5	0
2	Modulating precursor nanosheets for stabilized Ni-rich cathode material for Li-ion batteries. <i>Rare Metals</i> ,	5.5	1
1	Synchrotron X-Ray-Driven Nitrogen Reduction on an AgCu Thin Film. Small,2202720	11	

YANG REN